大模型算法(一):从Transformer到ViT再到LLaMA

news2024/9/21 4:33:04

单任务/单领域模型

深度学习最早的研究集中在针对单个领域或者单个任务设计相应的模型。
对于CV计算机视觉领域,最常用的模型是CNN卷积模型。其中针对计算机视觉中的不同具体任务例如分类任务,目标检测任务,图像分割任务,以CNN作为骨干backbone,加上不同的前后处理以及一些辅助层,来达到针对不同任务的更好效果。
对于NLP自然语言处理领域,最常用的模型起初是RNN,后续发展有LSTM,Transformer等。这个方向了解不多,具体自行百度。
在这里插入图片描述
在这里插入图片描述

Transformer:统一架构

Transformer起源于NLP领域,后面人们发现在CV领域Transformer也能用,甚至效果比CNN还要好,使得CV和NLP两个领域的模型架构得到统一,为多模态和大模型打下基础。
Transformer最广为人知的就是它的自注意力机制,要了解为什么创新出了这个机制,还要从RNN谈起。
在NLP领域,第一代模型范式就是RNN,循环神经网络。循环神经网络原理比较简单,RNN中的节点接受两个输入:上个节点的输出以及本次输入对应的词向量:
在这里插入图片描述
但是RNN缺点也很明显,不断地将输出再次输入,这种方法虽然可以关联到上文所包含的信息,但是只能关联到附近的上文信息,较远的上文信息对当下影响较小,而且容易出现梯度消失的问题。所以RNN在90年以后就很少用了,取而代之的是它的两个改进:LSTM长短时记忆网络和GRU门控循环网络。
在这里插入图片描述
但是二者也只是缓解了RNN的问题,并没有从根本上解决,后面又推出了seq2seq结构,依旧是缝缝补补。再后面计算机视觉中90年代提出的注意力机制,被Google mind团队应用在RNN上来做图像分类后,有学者把注意力机制从CV领域拿到了NLP领域来做机器翻译,Attention-based RNN。在这之后才到transformer的兴起,也就是那句“Attention is all your need”。
在这里插入图片描述
transformer简而言之即:将输入向量化,然后通过encoder编码层编码,再经过decoder解码层进行解码得到结果。
encoder的作用是理解和提取输入文本中的相关信息以及上下文的信息。解码器的任务是解码器则根据编码器的输出和先前生成的部分序列来生成输出序列。

注意,由于解码器需要根据先前生成部分的内容来生成输出序列中的下一部分,所以具有自回归的效果,这是encoder没有的,这个特性后面要提到。
在这里插入图片描述

这篇文章写的非常清晰明了,通俗易懂,我就不再班门弄斧了,大家可以直接看这篇文章。

一些细节问题的讲解

ViT:视觉领域的Transformer

Vit李沐大神团队出的讲解非常好:ViT讲解

自注意力和transformer自从提出没多久就有人用在了计算机视觉领域,但是因为如果直接将图像拉长成一个数组,数据复杂度太高,所以提出了stand-alone attention和axial attention等折中方案,分别是将局部窗口输入给transformer和将图像划分为两个维度,分别进行transformer

ViT基本使用了Transformer的原结构,没有什么大的改动。图像数据shape一般都是 C × H × W C\times H \times W C×H×W的,Transformer接受的数据是二维的,所以需要将三维的数据reformat为二维的,原文给出的方法是将图像分为 m × n m\times n m×n个patch,每个patch的尺寸为 H m × W n × C \frac{H}{m} \times \frac{W}{n}\times C mH×nW×C的,将patch拉长为长度为 H m × W n × C \frac{H}{m} \times \frac{W}{n}\times C mH×nW×C的一维数组,这样图像就变成了 [ m × n , H m × W n × C ] [m \times n,\frac{H}{m} \times \frac{W}{n}\times C] [m×n,mH×nW×C]的二维数组,原文是将一个224*224的图像分为了 14 × 14 14\times 14 14×14个patch,每个patch的尺寸为 16 × 16 16\times 16 16×16,输入数据为 196 × 768 196\times 768 196×768。从图像到patch的这个过程,可以直接简单分割,也可以使用768个 16 × 16 × 3 16\times 16 \times 3 16×16×3的卷积核提取,得到的结果是是 14 × 14 × 768 14\times 14\times 768 14×14×768的数据,再将其reformat一下得到 196 × 768 196\times 768 196×768
原文提到Transformer相较于CNN缺少两个归纳偏置,locality和平移等变性

归纳偏置即:从网络结构中就预先存在的偏置,是一种先验知识,所以称为归纳偏置。
locality:潜在的位置信息
平移等变性:f(g(x)) = g(f(x)),先做卷积还是先做平移效果是一样的。

所以要么使用更大的数据集进行训练。
在得到 196 × 768 196\times 768 196×768大小的图像patch序列后,还需要再concat上一个 1 × 768 1\times 768 1×768大小class embedding,用于存储分类结果,形成一个 197 × 768 197\times 768 197×768大小的tensor,再之后还需要添加上一个position embedding,position embedding是一个 197 × 768 197\times 768 197×768的表,直接add到原tensor上,得到最终输入transformer的tensor。
至于ViT的网络结构,跟Transformer是一样的,只不过把Norm层提前到了multi-head attention前面
在这里插入图片描述
decoder的作用是进行序列生成,分类的ViT不需要decoder block,只需要encoder即可。

Transformer大模型类型

Transformer的结构是encoder-decoder模式(编码器-解码器)模式,decoder和encoder相比,多了encoder-decoder注意力机制部分,也就是上面transformer架构图中decoder中多的一个环节,将encoder的输出和decoder自注意力输出作为输入的注意力部分。
基于transformer的大模型根据encoder,decoder的搭配不同分为三种技术路线。目前大部分大模型都是decoder-only路线的。
在这里插入图片描述
图片来自论文

encoder-only[基本不再使用]

只有encoder的大模型,例子是Bert。
在 Transformer 模型中,编码器负责理解和提取输入文本中的相关信息。这个过程通常涉及到处理文本的序列化形式,例如单词或字符,并且用自注意力机制(Self-Attention)来理解文本中的上下文关系。
encoder-only模型使用MLM(Masked Language Modeling)方法进行训练,即:将语料中的一部分遮住,让模型预测出被遮住的部分,这种训练方式使得encoder-only模型对于文本分类和情感分析这种理解类的任务效果较好。

BERT中还用到了next-sentence prediction task训练方式,该方式主要是训练模型理解上下文语义关系的能力

encoder-decoder[较少使用]

同时有encoder和decoder的大模型,代表作有:T5,清华的GLM(General Language Model Pretraining with Autoregressive Blank Infilling)
因为具有decoderblock部分,所以相较于encoder-only模型,这种模型的文本生成能力要更强一些,比较适合做一些生成序列和输入序列强相关的人物,例如翻译,生成的句子和原句强相关。

encoder-decoder的变体:Prefix-decoder架构

decoder-only[主流]

只有decoder部分的大模型,代表作有:ChatGPT,LLAMA
上文我们提到decoder中有一个部分是编码器-解码器注意力机制部分,那只有decoder,这个部分怎么办呢?

又分为Causal Decoder架构(因果解码器架构)和 Prefix Decoder架构(前缀解码器架构)

在这里插入图片描述

图片来源自论文:A survey of Large Language Models
蓝色是指前缀部分的mask,绿色是前缀和目标token之间的mask,黄色是指目标token之间的mask
简而言之就是表示是否能产生关联,能否读取到该token的信息

不同架构,第一个区别是encoder和decoder组合不同,第二个区别是mask的设计不同。
像对于encoder-decoder架构而言,他的mask可以理解为:encoder的token之间是相互可以关联的,decoder可以关联所有的encoder的token,也可以关联在自己前面的token。
对于causal decoder架构的mask,decoder的token只能关联到前面的token,对于自己后面的token无法产生联系,ChatGPT就是使用这这架构,
Prefix decoder架构跟上面的因果解码器架构相比的特点是将前缀部分的注意力机制改成了双向注意力机制,目标token间还是使用单项token,这就跟encoder很像了,实际上这种架构也是有encoder的,只不过和前缀的decoder是公用一套参数的,所以既可以说是deocder-only,也可以说成是encoder-decoder。代表作是GLM。

为什么大家都用decoder-only路线?

以下答案是依据该问题下的答案总结的

  • 对于文本生成类任务效果比较好
  • 相较于encoder-decoder路线,计算量小
  • decoder-only的泛化性能更好,依据论文原因有很多
    • 双向attention[也就是不进行mask,当下token可以接受到所有token的影响]有可能导致低秩问题,反而削弱了模型的表达能力。
    • decoder-only模型接受到的信息更少,训练难度更高,在数据充足时,经过训练,可以有更好的表征信息。
    • decoder-only的架构相比encoder-decoder在In-Context的学习上会更有优势,因为前者的prompt可以更加直接地作用于decoder每一层的参数,微调信号更强。依据

配套技术

归一化

早期:LayerNorm
为了提高LN的训练速度,提出了RMSNorm
为了稳定深度transformer模型训练,提出了DeepNorm

三种归一化位置方案:post-LN,pre-LN,sandwich-LN

优化器

常用优化器为Adam 优化器和 AdamW 优化器

微调技术

指令微调(instruction tuning)和对齐微调(alignment tuning)。前一种方法旨在增强(或解锁) LLM 的能力,而后一种方法旨在将 LLM 的行为与人类的价 值观或偏好对齐。

上下文学习ICL

为了使大模型能够在不进行梯度更新的情况下完成新的任务。
在这里插入图片描述

思维链CoT技术

思维链(Chain-of-Thought,CoT)是一种改进的提示策略,旨在提高 LLM 在复杂推理任务中的性能,例如算术推理,常识推理和符号推理。不同于 ICL 中仅使用输入输出对来构造提示,CoT 将可以导出最终输出 的中间推理步骤纳入提示中。通常情况下,CoT 可以在小样本(few-shot)和零样本(zero[1]shot)设置这两种主要设置下与 ICL 一起使用。

参考文献:
[1] A Survey of Large Language Models[J].
[2] Multimodal Foundation Models: From Specialists to General-Purpose Assistants[J].
[3] https://jalammar.github.io/illustrated-transformer/

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1680271.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

双向RNN和双向LSTM

双向RNN和双向LSTM 一、双向循环神经网络BiRNN 1、为什么要用BiRNN 双向RNN,即可以从过去的时间点获取记忆,又可以从未来的时间点获取信息,也就是说具有以下两个特点: 捕捉前后文信息:传统的单向 RNN 只能利用先前的上下文信息…

电路板维修【四】

【开关电源输出电压偏低不稳,用示波器立马锁定故障范围】:https://www.bilibili.com/video/BV1pf421D73K?vd_source3cc3c07b09206097d0d8b0aefdf07958 可以用示波器查看MOS的输出波形来查看其是否损坏: 电源芯片的供电电压来回跳变&#xf…

一位不合格的面试官在这两周让三位同学破防了

一位不合格的面试官在这两周让三位同学破防了 最近部门招聘 Java 技术同学; 技术需要两面,我也参与招聘过程并作为第一面的面试官,这两周平均每天一个。但是这两周我却让好几位同学破防了,内心其实也是五味杂陈的,做一…

Linux基础之僵尸进程与孤儿进程

目录 一、僵尸进程 1.1 什么是僵尸进程 1.2 为什么要有僵尸状态 1.3 观察我们的僵尸状态 1.4 关于僵尸进程的小Tip 二、孤儿进程 2.1 什么是孤儿进程 一、僵尸进程 1.1 什么是僵尸进程 在上一篇文章中,我们有提到过进程的死亡状态的概念,而我们的…

计算机寄存器是如何实现的

你好,我是 shengjk1,多年大厂经验,努力构建 通俗易懂的、好玩的编程语言教程。 欢迎关注!你会有如下收益: 了解大厂经验拥有和大厂相匹配的技术等 希望看什么,评论或者私信告诉我! 文章目录 一…

labelimg删除用不到的标签(yolo格式)以及 下载使用

问题:当我们标注完成新的类别后后直接删除classes.txt中不需要的类别之后再次打开labelimg会闪退,如何删除不需要的标签并且能够正确运行呢?(yolo格式) 原因:当我们打开labelimg进行标注的时候&#xff0c…

Golang RPC实现-day02

导航 Golang RPC实现一、客户端异步并发多个请求1、 客户端结构体2、 一个客户端,异步发送多个请求,使用call结构体代表客户端的每次请求3、客户端并发多个请求4、客户端接收请求 Golang RPC实现 day01 我们实现了简单的服务端和客户端。我们简单总结一…

26 分钟惊讶世界,GPT-4o 引领未来人机交互

前言 原文链接:OpenAI最新模型——GPT-4o,实时语音视频交互,未来人机交互近在眼前 - Kaiho小站 北京时间 5 月 14 日凌晨,OpenAI 发布新一代模型——GPT-4o,仅在 ChatGPT 面世 17 个月后,OpenAI 再次通过…

985大学电子信息专硕,考C语言+数据结构!中央民族大学25计算机考研考情分析!

中央民族大学(Minzu University of China)坐落于北京市学府林立的海淀区,南邻国家图书馆,北依中关村科技园,校园环境典雅,古朴幽美,人文氛围浓郁,具有鲜明的民族特色。由北京市、国家…

ubuntu下不生成core dumped

1、先用ulimit -c,如果看到0,说明没有开core dump。 所以我们输入ulimit -c unlimited,打开core dump。 再次用ulimit -c,看到unlimited了,说明core dump打开了。 注意这句ulimit -c unlimited只对当前会话有效。要永…

通俗易懂讲乐观锁与悲观锁

浅谈乐观锁与悲观锁 乐观锁和悲观锁是Java并发编程中的两个概念。使用乐观锁和悲观锁可以解决并发编程中数据不一致性、死锁、性能差等问题,乐观锁与悲观锁的实行方式不同,所以其特性也不近相同,下文将详细介绍两者的特性与适用场景。 《熊…

STM32-09-IWDG

文章目录 STM32 IWDG1. IWDG2. IWDG框图3. IWDG寄存器4. IWDG寄存器操作步骤5. IWDG溢出时间计算6. IWDG配置步骤7. 代码实现 STM32 IWDG 1. IWDG IWDG Independent watchdog,即独立看门狗,本质上是一个定时器,这个定时器有一个输出端&#…

ZYNQ之嵌入式驱动开发——字符设备驱动

文章目录 Linux驱动程序分类Linux应用程序和驱动程序的关系简单的测试驱动程序在petalinux中添加LED驱动新字符设备驱动 Linux驱动程序分类 驱动程序分为字符设备驱动、块设备驱动和网络设备驱动。 字符设备是按字节访问的设备,比如以一个字节收发数据的串口&#…

谷歌全力反击 OpenAI:Google I/O 2024 揭晓 AI 新篇章,一场激动人心的技术盛宴

🚀 谷歌全力反击 OpenAI:Google I/O 2024 揭晓 AI 新篇章,一场激动人心的技术盛宴! 在这个人工智能的全新时代,只有谷歌能让你眼前一亮!来自全球瞩目的 Google I/O 2024 开发者大会,谷歌用一场…

项目组GIT操作规范

分支规范 在开发过程中,一般会存在以下几种分支: main分支(master) master为主分支,也是用于部署生产环境的分支,一般由 dev 以及 fixbug分支合并,任何时间都不能直接修改代码。dev分支 develop 为开发分支&#xff…

Altium Designer封装库和元器件符号库下载与导入教程(SnapEDA 、Ultra Librarian、Alldatasheetcn)

1.AD封装库和元器件符号库下载网址 以下是一些全球热门的Altium Designer封装库和元器件符号库下载网址推荐: Altium Content Vault (现称为Altium Manufacturer Part Search):这是Altium官方提供的元器件库,可以直接在Altium Designer中使用…

Java码农的福音:再也不怕乱码了

即便是Java这样成熟的语言,开发者们也常常会遇到一个恼人的问题——乱码。 本文将深入探讨乱码的根本原因,并针对Java开发中的乱码场景提出有效的解决方案,辅以实战代码,让Java程序员从此告别乱码困扰。 一,字符集的…

文件存储解决方案-阿里云OSS

文章目录 1.菜单分级显示问题1.问题引出1.苹果灯,放到节能灯下面也就是id大于1272.查看菜单,并没有出现苹果灯3.放到灯具下面id42,就可以显示 2.问题分析和解决1.判断可能出现问题的位置2.找到递归返回树形菜单数据的位置3.这里出现问题的原因…

什么是最大路径?什么是极大路径?

最近学习中,在这两个概念上出现了混淆,导致了一些误解,在此厘清。 最大路径 在一个简单图G中,u、v之间的距离 d ( u , v ) min ⁡ { u 到 v 的最短路的长度 } d(u,v) \min \{ u到v的最短路的长度 \} d(u,v)min{u到v的最短路的…

音乐的力量

常听音乐的好处可以让人消除工作紧张、减轻生活压力、避免各类慢性疾病等等,其实这些都是有医学根据的。‍ 在医学研究中发现,经常的接触音乐节 奏、旋律会对人体的脑波、心跳、肠胃蠕动、神经感应等等,产生某些作用,进而促进身心…