STM32存储左右互搏 USB接口FATS文件读写U盘
STM32的USB接口可以例化为Host主机从而对U盘进行操作。SD卡/MicroSD/TF卡也可以通过读卡器转换成U盘使用。这里介绍STM32CUBEIDE开发平台HAL库实现U盘FATS文件访问的例程。
USB接口介绍
常见的USB接口电路部分相似而有不同的连接器应用,连接器有USB-A, USB-MINI, USB-MICRO, USB-TYPEC等。除了USB-A可以直接插入U盘,其它连接器可以通过转接板和转接线和U盘连接。如果用USB-TYPEC公头的U盘,则可以直接插入USB-TYPEC母座的主机。
常见USB-TYPEC接口电路如下:
去繁化简,主要是5V电源输入,接地,差分信号+ (DP), 差分信号- (DN)4个有效连接。对于STM32, DP连接到了PA12管脚, DN连接到了PA11管脚.
例程采用STM32F401CCU6芯片(兼容STM32F401RCT6, 仅封装不同)对U盘进行识别和读写操作。工程平台为STM32CUBEIDE。
STM32工程配置
首先建立基本工程并设置时钟,USB应用需要采用外部晶体时钟:
配置UART1作为通讯控制口:
配置USB接口:
配置U盘接口:
需要单独配置一个不用的GPIO作为输出,并在U盘接口配置参数里选择,这个管脚实际是对应对U盘供电的开关控制,很多板上没有设计出来。
再增加一个LED指示灯的控制管脚,这里是PC13,用于U盘操作过程中的指示。
然后配置FATS文件操作参数:
保存并生成初始工程代码:
STM32工程代码
UART串口printf打印输出实现参考:STM32 UART串口printf函数应用及浮点打印代码空间节省 (HAL)
功能代码里实现对USB进行轮询检测,当检测到U盘插入后进行闪灯,当U盘准好操作时保持亮灯。
通过串口发送单字节指令,进行控制操作:
0x01: 装载USB FATS系统
0x02: 创建/打开文件并从头位置写入数据
0x02: 打开文件并从头位置读入数据
0x02: 创建/打开文件并从特定位置写入数据
0x02: 打开文件并从特定位置读入数据
完整的main.c文件如下:
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* Copyright (c) 2023 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
//Written by Pegasus Yu in 2023
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "fatfs.h"
#include "usb_host.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "stdio.h"
#include "ctype.h"
#include "string.h"
#include "usart.h"
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
__IO float usDelayBase;
void PY_usDelayTest(void)
{
__IO uint32_t firstms, secondms;
__IO uint32_t counter = 0;
firstms = HAL_GetTick()+1;
secondms = firstms+1;
while(uwTick!=firstms) ;
while(uwTick!=secondms) counter++;
usDelayBase = ((float)counter)/1000;
}
void PY_Delay_us_t(uint32_t Delay)
{
__IO uint32_t delayReg;
__IO uint32_t usNum = (uint32_t)(Delay*usDelayBase);
delayReg = 0;
while(delayReg!=usNum) delayReg++;
}
void PY_usDelayOptimize(void)
{
__IO uint32_t firstms, secondms;
__IO float coe = 1.0;
firstms = HAL_GetTick();
PY_Delay_us_t(1000000) ;
secondms = HAL_GetTick();
coe = ((float)1000)/(secondms-firstms);
usDelayBase = coe*usDelayBase;
}
void PY_Delay_us(uint32_t Delay)
{
__IO uint32_t delayReg;
__IO uint32_t msNum = Delay/1000;
__IO uint32_t usNum = (uint32_t)((Delay%1000)*usDelayBase);
if(msNum>0) HAL_Delay(msNum);
delayReg = 0;
while(delayReg!=usNum) delayReg++;
}
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
UART_HandleTypeDef huart1;
/* USER CODE BEGIN PV */
extern ApplicationTypeDef Appli_state; //UDISK available status
uint8_t uart1_rxd[256]; //Uart1 rx buffer
uint8_t uart1_txd[256]; //Uart1 tax buffer
uint8_t cmd; //Uart1 command indication
uint8_t ustatus = 0; //UDISK ready to operation indication (0: not ready; 1: ready)
uint8_t disk_mount_status = 0; //Disk fats mount status indication (0: unmount; 1: mount)
uint8_t FATS_Buff[_MAX_SS]; //Buffer for f_mkfs() operation
FIL file; //File object for fats operation
UINT bytesread; //Byte number of read operation
UINT byteswritten;//Byte number of write operation
uint8_t rBuffer[20]; //Buffer for read
uint8_t WBuffer[20] ={1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20}; //Buffer for write
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_USART1_UART_Init(void);
void MX_USB_HOST_Process(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
#define LED_OFF HAL_GPIO_WritePin(GPIOC, GPIO_PIN_13, GPIO_PIN_SET)
#define LED_ON HAL_GPIO_WritePin(GPIOC, GPIO_PIN_13, GPIO_PIN_RESET)
#define LED_FLASH HAL_GPIO_TogglePin(GPIOC, GPIO_PIN_13)
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
FRESULT retUSB; //Operation return result status
disk_mount_status = 0;
uint32_t USB_Read_Size; //Read operation byte number
const TCHAR* filepath = "0:test.txt"; //File partition number and name
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_FATFS_Init();
MX_USB_HOST_Init();
MX_USART1_UART_Init();
/* USER CODE BEGIN 2 */
PY_usDelayTest();
PY_usDelayOptimize();
HAL_UART_Receive_IT(&huart1, uart1_rxd, 1);
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* USER CODE END WHILE */
MX_USB_HOST_Process();
/* USER CODE BEGIN 3 */
if(Appli_state==APPLICATION_START)
{
LED_FLASH;
PY_Delay_us_t(500000);
ustatus=0;
}
else if(Appli_state==APPLICATION_READY) //Status shift time from APPLICATION_START to APPLICATION_READY is about 90 second.
{
LED_ON;
ustatus=1;
}
else
{
LED_OFF;
ustatus = 0;
}
if(cmd>0)
{
if(ustatus!=1)
{
cmd = 0;
printf("\r\nUSB disk not ready!\r\n");
}
else
{
if(cmd==0x01) //Mount USB
{
cmd = 0;
if(disk_mount_status==1) printf("\r\nUSB mounted already\r\n");
else
{
retUSB = f_mount(&USBHFatFS,(TCHAR const*)USBHPath,1); //SD mount
if(retUSB==FR_NO_FILESYSTEM)
{
printf("\r\nFile system doesn't exist. Now to format......\r\n");
retUSB = f_mkfs((TCHAR const*)USBHPath, FM_FAT, 1024, FATS_Buff, sizeof(FATS_Buff)); //USB format
if(retUSB != FR_OK )
{
printf("\r\nFormat error: %d\r\n",retUSB);
}
else
{
printf("\r\nFormat OK\r\n");
}
}
else if(retUSB==FR_OK)
{
disk_mount_status = 1;
printf("\r\nUSB mount successful\r\n");
}
else
{
printf("\r\nUSB mount error: %d\r\n",retUSB);
}
}
}
else if(cmd==2) //File creation and write
{
cmd = 0;
if(disk_mount_status==0) printf("\r\nUSB not mounted: %d\r\n",retUSB);
else
{
retUSB = f_open( &file, filepath, FA_CREATE_ALWAYS | FA_WRITE ); //Open or create file
if(retUSB == FR_OK)
{
printf("\r\nFile open or creation successful\r\n");
retUSB = f_write( &file, (const void *)WBuffer, sizeof(WBuffer), &byteswritten); //Write data
if(retUSB == FR_OK)
{
printf("\r\nFile write successful\r\n");
}
else
{
printf("\r\nFile write error: %d\r\n",retUSB);
}
f_close(&file); //Close file
}
else
{
printf("\r\nFile open or creation error %d\r\n",retUSB);
}
}
}
else if(cmd==3) //File read
{
cmd = 0;
if(disk_mount_status==0) printf("\r\nUSB not mounted: %d\r\n",retUSB);
else
{
retUSB = f_open( &file, filepath, FA_OPEN_EXISTING | FA_READ); //Open file
if(retUSB == FR_OK)
{
printf("\r\nFile open successful\r\n");
retUSB = f_read( &file, (void *)rBuffer, sizeof(rBuffer), &bytesread); //Read data
if(retUSB == FR_OK)
{
printf("\r\nFile read successful\r\n");
PY_Delay_us_t(200000);
USB_Read_Size = sizeof(rBuffer);
for(uint16_t i = 0;i < USB_Read_Size;i++)
{
printf("%d ", rBuffer[i]);
}
printf("\r\n");
}
else
{
printf("\r\nFile read error: %d\r\n", retUSB);
}
f_close(&file); //Close file
}
else
{
printf("\r\nFile open error: %d\r\n", retUSB);
}
}
}
else if(cmd==4) //File locating write
{
cmd = 0;
if(disk_mount_status==0) printf("\r\nUSB not mounted: %d\r\n",retUSB);
else
{
retUSB = f_open( &file, filepath, FA_CREATE_ALWAYS | FA_WRITE); //Open or create file
if(retUSB == FR_OK)
{
printf("\r\nFile open or creation successful\r\n");
retUSB=f_lseek( &file, f_tell(&file) + sizeof(WBuffer) ); //move file operation pointer, f_tell(&file) gets file head locating
if(retUSB == FR_OK)
{
retUSB = f_write( &file, (const void *)WBuffer, sizeof(WBuffer), &byteswritten);
if(retUSB == FR_OK)
{
printf("\r\nFile locating write successful\r\n");
}
else
{
printf("\r\nFile locating write error: %d\r\n", retUSB);
}
}
else
{
printf("\r\nFile pointer error: %d\r\n",retUSB);
}
f_close(&file); //Close file
}
else
{
printf("\r\nFile open or creation error %d\r\n",retUSB);
}
}
}
else if(cmd==5) //File locating read
{
cmd = 0;
if(disk_mount_status==0) printf("\r\nUSB not mounted: %d\r\n",retUSB);
else
{
retUSB = f_open(&file, filepath, FA_OPEN_EXISTING | FA_READ); //Open file
if(retUSB == FR_OK)
{
printf("\r\nFile open successful\r\n");
retUSB = f_lseek(&file,f_tell(&file)+ sizeof(WBuffer)/2); //move file operation pointer, f_tell(&file) gets file head locating
if(retUSB == FR_OK)
{
retUSB = f_read( &file, (void *)rBuffer, sizeof(rBuffer), &bytesread);
if(retUSB == FR_OK)
{
printf("\r\nFile locating read successful\r\n");
PY_Delay_us_t(200000);
USB_Read_Size = sizeof(rBuffer);
for(uint16_t i = 0;i < USB_Read_Size;i++)
{
printf("%d ",rBuffer[i]);
}
printf("\r\n");
}
else
{
printf("\r\nFile locating read error: %d\r\n",retUSB);
}
}
else
{
printf("\r\nFile pointer error: %d\r\n",retUSB);
}
f_close(&file);
}
else
{
printf("\r\nFile open error: %d\r\n",retUSB);
}
}
}
else;
}
}
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
__HAL_RCC_PWR_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE2);
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 25;
RCC_OscInitStruct.PLL.PLLN = 336;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV4;
RCC_OscInitStruct.PLL.PLLQ = 7;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief USART1 Initialization Function
* @param None
* @retval None
*/
static void MX_USART1_UART_Init(void)
{
/* USER CODE BEGIN USART1_Init 0 */
/* USER CODE END USART1_Init 0 */
/* USER CODE BEGIN USART1_Init 1 */
/* USER CODE END USART1_Init 1 */
huart1.Instance = USART1;
huart1.Init.BaudRate = 115200;
huart1.Init.WordLength = UART_WORDLENGTH_8B;
huart1.Init.StopBits = UART_STOPBITS_1;
huart1.Init.Parity = UART_PARITY_NONE;
huart1.Init.Mode = UART_MODE_TX_RX;
huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart1.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN USART1_Init 2 */
/* USER CODE END USART1_Init 2 */
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOH_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOC, GPIO_PIN_13, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_8, GPIO_PIN_RESET);
/*Configure GPIO pin : PC13 */
GPIO_InitStruct.Pin = GPIO_PIN_13;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
/*Configure GPIO pin : PA8 */
GPIO_InitStruct.Pin = GPIO_PIN_8;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
}
/* USER CODE BEGIN 4 */
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
{
if(huart==&huart1)
{
cmd = uart1_rxd[0];
HAL_UART_Receive_IT(&huart1, uart1_rxd, 1);
}
}
/* USER CODE END 4 */
/**
* @brief Period elapsed callback in non blocking mode
* @note This function is called when TIM1 interrupt took place, inside
* HAL_TIM_IRQHandler(). It makes a direct call to HAL_IncTick() to increment
* a global variable "uwTick" used as application time base.
* @param htim : TIM handle
* @retval None
*/
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{
/* USER CODE BEGIN Callback 0 */
/* USER CODE END Callback 0 */
if (htim->Instance == TIM1) {
HAL_IncTick();
}
/* USER CODE BEGIN Callback 1 */
/* USER CODE END Callback 1 */
}
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
注意其中的f_mkfs格式化U盘库函数在不同的库版本参数数量不一样,上面范例是参数较多的版本,根据实际库函数调整即可。
STM32例程测试
串口指令0x01测试效果如下:
串口指令0x02测试效果如下:
串口指令0x03测试效果如下:
串口指令0x04测试效果如下:
串口指令0x05测试效果如下:
注意事项
STM32从识别U盘连接到可操作状态准备好时间比较长,实测约90秒
STM32做U盘容量识别时间也比较长,实测4GB U盘容量识别时间达到3~4分钟。
STM32例程下载
STM32F401CCU6 USB接口FATS文件读写U盘例程下载
–End–