【2024亚马逊云科技峰会】Amazon Bedrock + Llama3 生成式AI实践

news2024/11/16 20:51:09

在 4 月 18 日,Meta在官网上公布了旗下最新大模型Llama 3。目前,Llama 3已经开放了80亿(8B)和700亿(70B)两个小参数版本,上下文窗口为8k,据称,通过使用更高质量的训练数据和指令微调,Llama 3接受了超过 15 万亿个标记数据的训练——比 Llama 2 模型使用的训练数据集大七倍,其中包含四倍于 Llama 2 的代码数据,支持 8K 的上下文长度,是 Llama 2 的两倍。

在这里插入图片描述

现在,Meta 的 Llama 3 模型已在 Amazon Bedrock 中正式可用,本篇文章将浅要分析Llama 3模型特点,然后在Amazon Bedrock上使用Meta Llama 3 模型进行实践。

一、关于 Llama 3

在人工智能领域,性能的提升往往意味着技术的巨大进步,Llama 3的推出,正是这种进步的一个生动例证。与它的前身Llama 2相比,Llama 3在性能上实现了“重大飞跃”,这不仅仅是一个简单的比较,而是在多个维度上的全面超越。
在这里插入图片描述
Meta公司在Llama 3的训练程序上做出了显著改进,这些改进直接反映在了模型的性能上。错误拒绝率的降低意味着模型更加可靠,对齐度的提升则表明模型对输入数据的理解更加深入,而响应多样性的增加则为模型的应用提供了更广阔的空间。这些改进共同作用,使得Llama 3在推理、代码生成和指令跟踪等关键能力上都有了显著提高,极大地增强了模型的可操控性。

在具体的参数数量上,Llama 3 8B和Llama 3 70B在两个定制的24,000个GPU集群上的训练,不仅展示了Meta在硬件资源上的雄厚实力,也体现了其在软件优化上的深厚功底。这样的训练规模,使得Llama 3成为了当今性能最好的生成人工智能模型之一。
在这里插入图片描述
将视角转向人工智能基准测试,Llama 3的表现同样令人瞩目。Llama 3 8B在至少九个基准测试中超越了其他开放模型,如Mistral 7B和Google的Gemma 7B,这一成就充分证明了其卓越的性能;Llama 3 70B虽然未能超越Anthropic性能最高的机型Claude 3 Opus,但在MMLU、HumanEval和GSM-8K等五个基准测试上,它的得分却高于Claude 3系列中第二弱的模型Claude 3 Sonnet。
在这里插入图片描述
从两个模型的特点来说:

  • Llama 3 8B 适合有限的计算能力和资源以及边缘设备。该模型擅长文本摘要、文本分类、情感分析和语言翻译。
  • Llama 3 70B 适合内容创作、对话式AI、语言理解、研发和企业应用。该模型擅长文本摘要和准确性、文本分类和细微差别、情感分析和细微推理、语言建模、对话系统、代码生成和遵循指令。

此外,Meta 目前也正在训练参数超过 400B 的其他 Llama 3 模型。这些 400B 模型将具有新的能力,包括多模态、多语言支持和更长的上下文窗口。

二、Amazon Bedrock + Llama3 实践

现在,Meta 的 Llama 3 模型已在 Amazon Bedrock 中正式可用。

Amazon Bedrock 是一项完全托管的服务,通过单个 API 提供来自 AI21 Labs、Anthropic、Cohere、Meta、Stability AI 和 Amazon 等领先人工智能公司的高性能基础模型(FM),以及通过安全性、隐私性和负责任的 AI 构建生成式人工智能应用程序所需的一系列广泛功能。
在这里插入图片描述
Amazon Bedrock 提供易于使用的开发者体验,借助 Amazon Bedrock 知识库,可以安全地将基础模型连接到数据来源,以便在托管服务中增强检索,从而扩展基础模型已有功能,使其更了解特定领域和组织,越用越好,才是王道。
要使用Llama 3 8B和Llama 3 70B模型,我们首先需要进入Amazon Bedrock控制台,下滑左侧导航栏,找到模型访问权限,点击然后在右侧找到Llama 3 8B和Llama 3 70B,初次使用会显示可请求状态。
在这里插入图片描述
如果显示为“可请求”,则翻到上面,点击管理模型访问权限,然后勾选刚刚的Llama3模型,翻到底部提交更改即可。
在这里插入图片描述
下面在 Amazon Bedrock 控制台中测试 Meta Llama 3 模型。首先在左侧菜单窗格中选择操场下的文本或聊天。然后选择选择模型,并将类别设置为 Meta,将模型设置为 Llama 8B Instruct 或 Llama 3 70B Instruct。
在这里插入图片描述
进入后可以看到Llama 3 为我们提供了多项配置:
在这里插入图片描述
其中温度是一个控制生成文本多样性的参数,较高的温度值,如1.0,会产生更随机的输出,而较低的温度值,如0.1,会使模型更倾向于选择最可能的单词。排名前P也称Top-p,是一种考虑模型输出的全局策略,它决定了更好地探索可能的输出序列,从而产生更多样化的输出。具体来说,Top-p 策略首先按照每个词的预测概率对它们进行排序,然后根据这些词的顺序逐个选择下一个输出,直到累计概率达到 p。Top-p 可以更好地探索可能的输出序列,从而产生更多样化的输出。响应长度是生成文本的最大长度限制,超过这个长度的文本将被截断或停止生成。
在这里插入图片描述
另外,通过选择查看 API 请求,还可以使用亚马逊云科技命令行界面 (Amazon CLI) 和 Amazon SDK 中的代码示例来访问该模型。您可以使用诸如 meta.llama3-8b-instruct-v1 或 meta.llama3-70b-instruct-v1 这样的模型 ID。这是一个 Amazon CLI 命令样本。

$ aws bedrock - runtime invoke - model\--model - id meta.llama3 - 8 b - instruct - v1: 0\--body "{\"prompt\":\"Simply put, the theory of relativity states that\\n the laws of physics are the same everywhere in the universe, and that the passage of time and the length of objects can vary depending on their speed and position in a gravitational field \",\"max_gen_len\":512,\"temperature\":0.5,\"top_p\":0.9}"\--cli - binary - format raw - in -base64 - out\--region us - east - 1\ invoke - model - output.txt

并且,可以使用 Amazon Bedrock + Amazon SDK 用各种编程语言构建您的应用程序。

def invoke_llama3(self, prompt): try: body = {
    "prompt": prompt,
    "temperature": 0.5,
    "top_p": 0.9,
    "max_gen_len": 512,
}
response = self.bedrock_runtime_client.invoke_model(modelId = "meta.llama3-8b-instruct-v1:0", body = json.dumps(body))
response_body = json.loads(response["body"].read()) completion = response_body["generation"]
return completion
except ClientError: logger.error("Couldn't invoke Llama 3") raise

以下是部分效果:
在这里插入图片描述
以上只是初步实践,在今年即将召开的2024亚马逊云科技峰会上,将有更为深入的生成式AI应用构建实践,其将聚焦如何借助Amazon Bedrock服务,结合企业业务应用场景,简化模型选择,模型定制和集成应用。使用一站式的Bedrock服务,用户可以通过单个 API 体验20多个业界领先的基础模型(包括Claude3),利用私有数据通过RAG、微调以及提示词工程进行模型定制,快速部署模型到生成式AI应用程序中,推动业务创新,抢占赛道新机遇。
在这里插入图片描述

三、2024亚马逊云科技峰会

亚马逊云科技中国峰会将于2024年5月29日至30日在上海世博中心盛大举办,作为一年一度的科技盛会,这次峰会将再次为我们带来云计算领域的最新动态和前沿技术。在这里,每一位参会者将有机会深入了解云计算如何推动行业发展,以及生成式AI等前沿技术的落地实践。

在这里插入图片描述
除了基于Amazon Bedrock构建生成式AI应用实践外,大会还将带来自亚马逊云科技全球高管携手云计算行业领军人物围绕生成式AI的重磅发布、分享多个创新场景与客户案例,探讨生成式AI如何重构客户体验、聚焦基础模型训练与推理的基础服务、最新发布的,开箱即用的Amazon Q服务以及多个行业创新范例等等主题。

在这里插入图片描述

点击参会链接,一起报名,享受这场科技盛会吧!

参会链接:https://summit.amazoncloud.cn/2024/register.html?source=3WZcI3KGLx6J6N0DwCFnx+NX4Uci7qzWUOF7bsrAmtLUsDaP+lqWi1ygbJEy+ONA

最后

💖 个人简介:博客专家,人工智能优质创作者,2022年博客之星人工智能领域TOP2,COC武汉城市开发者社区主理人、2023中国开发者影响力年度优秀主理人

📝 个人主页:中杯可乐多加冰

🎉 支持我:点赞👍+收藏⭐️+留言📝

点击下方公众号,加入采苓AI研习社,回复“白皮书”获取“中国大模型发展白皮书.pdf”,回复“产业报告”获取“AIGC深度产业报告 ”。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1664828.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

JavaScript 动态网页实例 —— 事件处理应用

前言 事件处理的应用很广泛。在事件处理的应用中,鼠标事件的应用是最常用到的。本章给出几个鼠标事件处理应用的示例,包括:页面预览、图像切换、点亮文本、鼠标跟随、鼠标感应和禁用鼠标按键。在这些示例中,有的可以直接拿来应用,有的则只提供了一种应用的方法,稍加拓展,…

聚合工程搭建、工程依赖导入

上一章讲了自动化云测平台的一些环境的准备 如果还未完成云服务器的环境搭建和本地环境的搭建,请点击左侧 -> 传送门 那么正式开始这一章的内容 聚合工程搭建 创建项目 我们先给项目命个名:xxx-meter,构建系统,我们选择M…

MySQL中索引失效的问题

索引失效的情况 这是正常查询情况,满足最左前缀,先查有先度高的索引。 1. 注意这里最后一种情况,这里和上面只查询 name 小米科技 的命中情况一样。说明索引部分丢失! 2. 这里第二条sql中的,status > 1 就是范围查…

WPF之工具栏菜单栏功能区。

1&#xff0c;菜单栏&#xff0c;工具栏&#xff0c;状态栏。 1.1&#xff0c;Menu中可添加菜单分隔条<Separator></Separator>作为分割线&#xff0c;使用Separator可以通过改变其template来自定义&#xff0c;Separator是无焦点的&#xff0c;如果简单的在MenuIt…

攻防世界-web-unseping

题目 知识点 PHP代码审计PHP序列化和反序列化PHP中魔术方法命令执行绕过方式 解读源码 <?php highlight_file(__FILE__);class ease{private $method;private $args;function __construct($method, $args) {$this->method $method;$this->args $args;}function …

心理应用工具包 psychtoolbox 绘制小球走迷宫

psychtoolbox 是 MATLAB 中的一个工具包&#xff0c;对于科研人员设计实验范式来说是不二之选&#xff0c;因为它可以操作计算机的底层硬件&#xff0c;精度可以达到帧的级别。 文章目录 一、实验目的二、psychtoolbox 的下载安装三、Psychtoolbox 的基本使用四、完整代码 一、…

即插即用篇 | YOLOv8 引入多光谱通道注意力 | 频率领域中的通道注意力网络

本改进已集成到 YOLOv8-Magic 框架。 注意力机制,尤其是通道注意力,在计算机视觉领域取得了巨大成功。许多工作聚焦于如何设计高效的通道注意力机制,同时忽略了一个基本问题,即通道注意力机制使用标量来表示通道,这很困难,因为会造成大量信息的丢失。在这项工作中,我们从…

Zabbix监控中文乱码问题解决方法

一、问题描述 1.查看Zabbix仪表盘 在Zabbix的监控仪表盘界面&#xff0c;字体显示为“方框”&#xff0c;无法查看到具体的性能指标名称。 2.问题分析 Zabbix的web端没有中文字库&#xff0c;导致切换到中文页面&#xff0c;中文成了乱码这个问题&#xff0c;我们最需要把中文…

Stable Diffusion教程|图生图原理和实战

Stable Diffusion凭借其卓越的图生图功能&#xff0c;极大地提升了图像生成的可控性与输出品质&#xff0c;赋予用户前所未有的个性化创作风格表达能力。这一革新特性使得Stable Diffusion不仅能精准地捕捉用户的艺术愿景&#xff0c;更能以数字化手段孕育出新颖且极具创意的画…

流量过滤与转发路径控制

1.策略路由 &#xff08;1&#xff09;策略路由技术背景 &#xff08;2&#xff09;PBR介绍-基本概念 &#xff08;3&#xff09;PBR介绍-结构 &#xff08;4&#xff09;PBR介绍-命令语法 PBR的节点匹配模式&#xff1a; permit表示对满足匹配条件的报文进行策略路由 deny表示…

OpenAI下周发布更新;TikTok将自动标记AIGC;智谱AI亮相2024 ICLR

OpenAI 官宣下周举办直播发布更新 OpenAI 今日凌晨官宣&#xff0c;将在当地时间 5 月 13 日上午十点&#xff08;北京时间 5 月 14 日凌晨两点&#xff09;在官网进行直播&#xff0c;届时将演示一些 ChatGPT 和 GPT-4 的更新。 OpenAI CEO Sam Altman 补充表示&#xff0c;届…

【C++】-------反向迭代器的模拟实现(补充)

目录 前言 一、反向迭代器接口&#xff08;用户层&#xff09; 二、模拟实现 三、以vector模拟实现为例 四、总结 前言 在vector和list的接口中我们实际上有说明过反向迭代器的用法&#xff0c;这里就有个问题&#xff0c;并不是只有这两个容器存在反向迭代器的。那么对于他…

【力扣】63.不同路径 II

原题链接&#xff1a;. - 力扣&#xff08;LeetCode&#xff09; 目录 1.题目描述 2.思路分析 3.代码实现 1.题目描述 一个机器人位于一个 m x n 网格的左上角 &#xff08;起始点在下图中标记为 “Start” &#xff09;。 机器人每次只能向下或者向右移动一步。机器人试…

探索生产者/消费者模式:解决并发编程中的资源竞争

序言 在并发编程中&#xff0c;资源竞争是一个常见的问题。为了有效地管理资源并确保线程安全&#xff0c;需要采用一些有效的方法。其中之一是生产者/消费者模式&#xff0c;它是一种经典的并发设计模式&#xff0c;用于解决生产者和消费者之间的协作问题。本文将深入探讨生产…

零代码平台助力中国石化江苏油田实现高效评价体系

概述&#xff1a; 中国石化集团江苏石油勘探局有限公司面临着评价体系依赖人工处理数据、计算繁琐且容易出错的挑战。为解决这一问题&#xff0c;他们决定借助零代码平台明道云开发江苏油田高质量发展经济指标评价系统。该系统旨在实现原始数据批量导入与在线管理、权重及评分…

27.哀家要长脑子了!---栈与队列

1.739. 每日温度 - 力扣&#xff08;LeetCode&#xff09; 用单调栈的方法做&#xff1a; 从左到右遍历数组&#xff1a; 栈中存放的是下标&#xff0c;每个温度在原数组中的下标&#xff0c;从大到小排列&#xff0c;因为这样才能确保的是最近一天的升高温度 如果栈为空&am…

Linux线程(二)线程互斥

目录 一、为什么需要线程互斥 二、线程互斥的必要性 三、票务问题举例&#xff08;多个线程并发的操作共享变量引发问题&#xff09; 四、互斥锁的用法 1.互斥锁的原理 2、互斥锁的使用 1、初始化互斥锁 2、加锁和解锁 3、销毁互斥锁&#xff08;动态分配时需要&#…

程序员代码面试指南题目解析(一)

题目一&#xff1a;如何仅用递归函数和栈操作逆序一个栈 题目要求&#xff1a; 一个栈依次压入 1、2、3、4、5&#xff0c;那么从栈顶到栈底分别为5、4、3、2、1。将这个栈 转置后&#xff0c;从栈顶到栈底为 1、2、3、4、5&#xff0c;也就是实现栈中元素的逆序&#xff0c;但…

JUC下的BlockingQueue详解

BlockingQueue是Java并发包(java.util.concurrent)中提供的一个接口&#xff0c;它扩展了Queue接口&#xff0c;增加了阻塞功能。这意味着当队列满时尝试入队操作&#xff0c;或者队列空时尝试出队操作&#xff0c;线程会进入等待状态&#xff0c;直到队列状态允许操作继续。这…

【Python系列】Python中列表属性提取

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…