GEE数据集——高分辨率全球树冠高度地图(1 米)Meta 公司

news2024/11/17 0:05:46

高分辨率 1 米全球树冠高度地图

简介

全球树冠高度地图数据集提供了对全球树冠高度的全面了解,有助于对森林生态系统、碳固存和气候变化减缓工作进行精确监测。该数据集由 Meta 和世界资源研究所合作开发,是了解森林结构和动态的基石。通过融合最先进的卫星图像和先进的人工智能技术,该数据集达到了无与伦比的详细程度。通过分析 2009 年至 2020 年的卫星图像,重点分析 2018 年至 2020 年的数据,该数据集提供了广泛的时间覆盖范围,可用于跟踪地球上整个陆地的冠层高度随时间的变化。利用 DiNOv2 等人工智能模型,该数据集可以精确预测树冠高度,平均绝对误差仅为 2.8 米,从而有助于准确评估碳储量和减缓战略的有效性。

此外,将该数据集纳入保护计划、碳信用监测和气候协议,也凸显了其在指导可持续森林管理实践、植树造林、重新造林工作和生物多样性保护方面的重要意义。该数据集可在 GitHub 上访问用于生成数据的人工智能模型,从而促进森林监测和碳封存方面的进一步研究和开发,为全球应对气候变化做出贡献。您可以点击这里阅读来自 meta 的博文和相关论文。

Using Artificial Intelligence to Map the Earth’s Forests - Meta Sustainability

摘要

绘制植被结构图对于了解全球碳循环以及监测基于自然的气候适应和减缓方法至关重要。通过对这些数据的重复测量,可以观察现有森林的砍伐或退化情况、森林的自然再生以及农林业等可持续农业实践的实施情况。高空间分辨率的树冠高度和树冠投影面积评估对于监测碳通量和评估基于树木的土地利用也很重要,因为森林结构在空间上可能高度异质,特别是在农林系统中。极高分辨率的卫星图像(地面采样距离小于一米)使提取树木层面的信息成为可能,同时还能进行大尺度监测。本文介绍了第一份同时为多个次国家辖区制作的高分辨率树冠高度图。具体来说,我们为加利福尼亚州和圣保罗州制作了非常高分辨率的树冠高度地图,与之前基于哨兵/GEDI 的全球树冠高度地图的十米(10 米)分辨率相比,分辨率有了显著提高。这些地图是通过在 2017 年至 2020 年的 Maxar 图像上训练的自监督模型中提取特征,并根据航空激光雷达地图训练密集预测解码器生成的。我们还引入了一个后处理步骤,使用在 GEDI 观测数据上训练的卷积网络。我们利用预留验证激光雷达数据以及与其他遥感地图和实地收集的数据进行比较,对所提出的地图进行了评估,发现我们的模型产生的平均绝对误差(MAE)为 2.8 米,平均误差(ME)为 0.6 米。

https://www.sciencedirect.com/science/article/pii/S003442572300439X

碳清除信用额度需要高分辨率和大比例尺的制图

Meta 已设定了在 2030 年实现其价值链净零排放的目标,这主要将通过减少企业排放来实现。Meta 将通过碳清除(包括一系列自然和技术方法)解决任何残余排放问题。以森林为基础的碳清除以及利用技术更好地监测、报告和验证碳固存是 Meta 碳清除战略的重要组成部分。

基于自然的碳清除(包括恢复)对实现《巴黎气候协定》目标所需的减排做出了重大贡献。受管理的林地已成为自愿碳市场碳信用额的主要来源,IPCC 认为森林管理是减缓气候变化影响的重要工具。要以减缓气候变化所需的规模管理森林,就必须在全球范围内改进对森林碳信用额的监测和核查,特别是通过提高森林结构数据的空间分辨率。重要的是,利用人工智能改进遥感数据既有助于缩小报告的土地使用排放量与测量的土地使用排放量之间的差距,又能对国际、国家、地方和企业范围内的保护和恢复项目进行监测。

人工智能和基础模型的突破速度不断加快,正在改变我们与周围世界互动的方式。近年来,通过遥感技术绘制森林地图在尺度、分辨率和刷新率(即 1 米灵敏度以及能够探测树冠高度的微小变化)方面都取得了快速进步。由于毁林事件通常发生在大片区域,因此可以使用分辨率相对较低的图像来监测毁林情况。此外,森林砍伐通常需要移除较大、较成熟的树木,这通常更容易在卫星图像中发现。相比之下,植树造林和重新造林项目对监测树木生长提出了更高的挑战,对幼树、稀疏树木(如农林业)或小项目区(如社区主导的工作)的监测需要在大面积区域内对单棵树木进行敏感度分析。

Meta 公司和世界资源研究所认为,实现人工智能的民主化可以成为一个重要工具,为减缓和适应气候变化提供资金并提高透明度。高分辨率地图的全球处理所需的计算规模和人工智能模型首次面世。我们在允许商业使用的许可下发布了数据和模型,使任何人都能在数据基础上进一步促进碳市场及其他保护和恢复应用中的问责制和透明度。

方法

为了在不断更新地球森林地图方面取得进展,我们今天与大家分享我们绘制的全球陆地树冠高度图1。该数据集创建了全球树冠高度基线,包括单棵树木和树冠开阔的森林。该数据集有助于对全球森林存量进行详细核算。我们的数据发现,地球上超过三分之一的陆地(5000 万平方公里)的树冠高度超过 1 米,3500 万平方公里的树冠高度超过 5 米。

数据集分析了 2009 年至 2020 年的最佳卫星图像。虽然云层和季节性对分析的图像日期造成了限制,但 80% 的数据是用 2018 年至 2020 年的图像生成的。该基准线可作为碳信用监测和验证方案中实地碳测量的补充参考。当有更新的图像时,可使用公开共享的模型来检测冠层高度的变化。

为了在合理使用资源的情况下绘制地图,我们需要同时实现全球稳健模型和快速推理。为此,我们利用了基于 Meta Research 人工智能研究所开发的 DiNOv2 方法的先进模型。该模型在全球 1800 万张卫星图像(Maxar Technologies 提供的 0.5 米自然彩色图像)上进行了训练,图像像素超过万亿。通过该人工智能模型,我们可以预测特定区域的树冠高度,平均绝对误差仅为 2.8 米,从而实现对单棵树木的检测和测量。为了扩大人工智能模型的适用范围,我们建立了该模型,当重新采样到相同的 0.5 米分辨率和类似的色彩平衡时,可以同时使用航空和无人机图像。有关模型和性能的详细信息,请参阅我们最近发表的同行评审论文。

我们利用强大的自我监督学习(SSL)方法,获得了全球一致的高分辨率对地观测基础模型。这包括完全通过未标记的卫星图像来训练 DINOv2 模型。这种方法可教会人工智能模型提取一般图像特征,而无需昂贵且耗时的标签。SSL 架构提供了视觉感知的支柱,可用于推断任何类型的特征。在我们的应用中,我们利用美国激光雷达地面实况数据(NEON 数据集)的适度样本,在 SSL 架构之上训练树冠高度预测器。

DINOv2 已证明是一个非常有效的基础模型,可用于各种下游任务。例如,仅在自然图像上训练的主干模型在深度估计和绘画等艺术图像的部分匹配方面显示出很强的通用性。同样,我们希望我们发布的全球地球基础模型也能用于树冠高度估算以外的其他下游任务,如树木检测和分割。

四个不同大洲的树冠高度图示例。左图为卫星图像(来自 Maxar Technologies),中图为预测的树冠高度,右图中的红点表示进行分析的地点。该模型在全球不同生态系统中具有良好的通用性 

树冠高度图可以作为提取地面生物量的起点,并为保护和恢复项目建立基线。世界资源研究所为 AFR100 管理 TerraFund

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1662950.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

python代码学习案例-用turtle库绘制爱心图形效果

Python爱心代码,我们可以使用多种方法,包括使用turtle库来绘制图形,或者使用字符打印来在控制台中显示爱心。 首先,确保你已经安装了Python,并且你的环境支持turtle库(它通常是Python标准库的一部分&#…

Python中批量提取[]括号内第一个元素的四种方法

目录 一、引言 二、方法介绍 使用正则表达式(Regular Expression) 使用字符串分割(String Split) 使用ast模块解析字符串为列表 使用JSON模块解析字符串 三、方法比较与选择 四、总结 一、引言 在Python数据处理过程中&a…

c++游戏小技巧16:实例1(地牢生成算法)

1.前言 (头图) (其实最开始是想写恶魔轮盘的,但没想到它竟然更新了) (等我有时间在更,最近很忙,玩第五玩的) 想法来源:房间和迷宫:一个地牢生成算法https://indienova…

百面算法工程师 | 正则优化函数——BN、LN、Dropout

本文给大家带来的百面算法工程师是正则优化函数,文章内总结了常见的提问问题,旨在为广大学子模拟出更贴合实际的面试问答场景。在这篇文章中,我们将总结一些BN、LN、Dropout的相关知识,并提供参考的回答及其理论基础,以…

redis深入理解之数据存储

1、redis为什么快 1)Redis是单线程执行,在执行时顺序执行 redis单线程主要是指Redis的网络IO和键值对读写是由一个线程来完成的,Redis在处理客户端的请求时包括获取(socket 读)、解析、执行、内容返回 (socket 写)等都由一个顺序串行的主线…

网络编程套接字 (二)---udosocket

本专栏内容为:Linux学习专栏,分为系统和网络两部分。 通过本专栏的深入学习,你可以了解并掌握Linux。 💓博主csdn个人主页:小小unicorn ⏩专栏分类:网络 🚚代码仓库:小小unicorn的代…

mikefile函数与实用模板

文章目录 0.概述1.函数调用语法2.字符串处理函数2.1 subst(字符串替换函数)2.2 patsubst(模式字符串替换函数)2.3 strip(去空格函数)2.4 findstring(查找字符串函数)2.5 filter&…

大型模型技术构建本地知识库

使用大型模型技术构建本地知识库是一个复杂的过程,涉及到数据科学、机器学习和软件工程等多个领域的知识。以下是构建本地知识库的一般步骤。北京木奇移动技术有限公司,专业的软件外包开发公司,欢迎交流合作。 1.需求分析: 确定知…

java版数据结构:堆,大根堆,小根堆

目录 堆的基本概念: 如何将一个二叉树调整成一个大根堆: 转成大根堆的时间复杂度 根堆中的插入,取出数据: 堆的基本概念: 堆是一种特殊的树形数据结构,它满足以下两个性质: 堆是一个完全二叉…

常见物联网面试题详解

物联网一直是非常火热的行业,G端如智慧城市、智慧工厂、智慧园区、智慧水利、智慧矿山等行业,都会涉及到物联网,基本都是软硬一体,因此当面试相关企业时,物联网平台是面试企业重点考察的项,小伙伴如果从事相…

网络安全在数字时代的重要性:以近期网络安全事件为镜

在当今这个信息化爆炸的时代,互联网如同一张无形的网,将我们的生活、工作、学习紧密相连。然而,这张网在带来便捷的同时,也暗藏着无数的安全隐患。近年来,网络安全事件频发,从个人隐私泄露到企业数据被盗&a…

中国地图(2024版审图号地图)和地图变化说明

2024版shp格式审图号地图预览图: 新版中国地图的变化(简述) 国土面积的增加:新版中国地图显示,中国的国土面积从960万平方公里增加到1045万平方公里,增加了85万平方公里。 九段线变为十段线:…

如何使用 ArcGIS Pro 制作地震动画

在做某些汇报的时候,除了图文,如果有动画肯定会成为加分项,这里为大家介绍一下如何使用 ArcGIS Pro 制作地震动画,希望能对你有所帮助。 添加时间 在图层属性内,选择时间选项卡,图层时间选择每个要素具有…

每日两题 / 226. 翻转二叉树 98. 验证二叉搜索树(LeetCode热题100)

226. 翻转二叉树 - 力扣(LeetCode) 以后续遍历的方式交换当前节点的左右指针 /*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), ri…

自适应调节Q和R的自适应UKF(AUKF_QR)的MATLAB程序

简述 基于三维模型的UKF,设计一段时间的输入状态误差较大,此时通过对比预测的状态值与观测值的残差,在相应的情况下自适应调节系统协方差Q和观测协方差R,构成自适应无迹卡尔曼滤波(AUKF),与传统…

你可能喜欢但也许还不知道的好用网站-搜嗖工具箱

在线工具 https://www.zxgj.cn/ 作为一个工作生活好帮手,在线咨询网站提供了丰富的实用功能,从工作中的图表制作、图片修改到生活中的各种测试、健康、娱乐、学习、理财等等涵盖面很广。 在线工具网站从界面和操作上来看对用户也很友好,页面…

提高Rust安装与更新的速度

一、背景 因为rust安装过程中,默认的下载服务器为crates.io,这是一个国外的服务器,国内用户使用时,下载与更新的速度非常慢,因此,我们需要使用一个国内的服务器来提高下载与更新的速度。 本文推荐使用字节…

谷歌地图商家采集在外贸客户开发中的作用和意义

谷歌地图商家采集在外贸客户开发中扮演着至关重要的角色,其主要作用和意义体现在以下几个方面: 精准定位目标市场:通过谷歌地图,外贸人员可以根据特定的行业关键词(如“fabric stores”)搜索目标国家或地区…

Redis加入系统服务,开机自启

vi /etc/systemd/system/redis.service i :wq #加载服务配置文件 systemctl daemon-reload #启动redis systemctl start redis #设置开机自启 systemctl enable redis #查看启动状态 systemctl status redis

11.买卖股票的最佳时机Ⅰ

文章目录 题目简介题目解答解法一:一次遍历代码:复杂度分析: 题目链接 大家好,我是晓星航。今天为大家带来的是 买卖股票的最佳时机面试题Ⅰ 相关的讲解!😀 题目简介 题目解答 解法一:一次遍历…