鸿蒙内核源码分析(VFS篇) | 文件系统和谐共处的基础

news2024/11/19 7:41:38

基本概念 | 官方定义

VFS(Virtual File System)是文件系统的虚拟层,它不是一个实际的文件系统,而是一个异构文件系统之上的软件粘合层,为用户提供统一的类Unix文件操作接口。由于不同类型的文件系统接口不统一,若系统中有多个文件系统类型,访问不同的文件系统就需要使用不同的非标准接口。而通过在系统中添加VFS层,提供统一的抽象接口,屏蔽了底层异构类型的文件系统的差异,使得访问文件系统的系统调用不用关心底层的存储介质和文件系统类型,提高开发效率。

OpenHarmony内核中,VFS框架是通过在内存中的树结构来实现的,树的每个结点都是一个Vnode结构体,父子结点的关系以PathCache结构体保存。VFS最主要的两个功能是:

  • 查找节点。
  • 统一调用(标准)。

VFS层具体实现包括四个方面:

  • 通过三大函数指针操作接口,实现对不同文件系统类型调用不同接口实现标准接口功能;
  • 通过VnodePathCache机制,提升路径搜索以及文件访问的性能;
  • 通过挂载点管理进行分区管理;
  • 通过FD管理进行进程间FD隔离等。

三大操作接口

VFS层通过函数指针的形式,将统一调用按照不同的文件系统类型,分发到不同文件系统中进行底层操作。各文件系统的各自实现一套Vnode操作(VnodeOps)、挂载点操作(MountOps)以及文件操作接口(file_operations_vfs),并以函数指针结构体的形式存储于对应Vnode、挂载点、File结构体中,实现VFS层对下访问。这三个接口分别为:

VnodeOps | 操作 Vnode 节点
struct VnodeOps {
    int (*Create)(struct Vnode *parent, const char *name, int mode, struct Vnode **vnode);//创建节点
    int (*Lookup)(struct Vnode *parent, const char *name, int len, struct Vnode **vnode);//查询节点
    //Lookup向底层文件系统查找获取inode信息
    int (*Open)(struct Vnode *vnode, int fd, int mode, int flags);//打开节点
    int (*Close)(struct Vnode *vnode);//关闭节点
    int (*Reclaim)(struct Vnode *vnode);//回收节点
    int (*Unlink)(struct Vnode *parent, struct Vnode *vnode, const char *fileName);//取消硬链接
    int (*Rmdir)(struct Vnode *parent, struct Vnode *vnode, const char *dirName);//删除目录节点
    int (*Mkdir)(struct Vnode *parent, const char *dirName, mode_t mode, struct Vnode **vnode);//创建目录节点
    /*
    创建一个目录时,实际做了3件事:在其“父目录文件”中增加一个条目;分配一个inode;再分配一个存储块,
    用来保存当前被创建目录包含的文件与子目录。被创建的“目录文件”中自动生成两个子目录的条目,名称分别是:“.”和“..”。
    前者与该目录具有相同的inode号码,因此是该目录的一个“硬链接”。后者的inode号码就是该目录的父目录的inode号码。
    所以,任何一个目录的"硬链接"总数,总是等于它的子目录总数(含隐藏目录)加2。即每个“子目录文件”中的“..”条目,
    加上它自身的“目录文件”中的“.”条目,再加上“父目录文件”中的对应该目录的条目。
    */
    int (*Readdir)(struct Vnode *vnode, struct fs_dirent_s *dir);//读目录节点
    int (*Opendir)(struct Vnode *vnode, struct fs_dirent_s *dir);//打开目录节点
    int (*Rewinddir)(struct Vnode *vnode, struct fs_dirent_s *dir);//定位目录节点
    int (*Closedir)(struct Vnode *vnode, struct fs_dirent_s *dir);//关闭目录节点
    int (*Getattr)(struct Vnode *vnode, struct stat *st);//获取节点属性
    int (*Setattr)(struct Vnode *vnode, struct stat *st);//设置节点属性
    int (*Chattr)(struct Vnode *vnode, struct IATTR *attr);//改变节点属性(change attr)
    int (*Rename)(struct Vnode *src, struct Vnode *dstParent, const char *srcName, const char *dstName);//重命名
    int (*Truncate)(struct Vnode *vnode, off_t len);//缩减或扩展大小
    int (*Truncate64)(struct Vnode *vnode, off64_t len);//缩减或扩展大小
    int (*Fscheck)(struct Vnode *vnode, struct fs_dirent_s *dir);//检查功能
    int (*Link)(struct Vnode *src, struct Vnode *dstParent, struct Vnode **dst, const char *dstName);
    int (*Symlink)(struct Vnode *parentVnode, struct Vnode **newVnode, const char *path, const char *target);
    ssize_t (*Readlink)(struct Vnode *vnode, char *buffer, size_t bufLen);
};

MountOps | 挂载点操作

//挂载操作
struct MountOps {
    int (*Mount)(struct Mount *mount, struct Vnode *vnode, const void *data);//挂载
    int (*Unmount)(struct Mount *mount, struct Vnode **blkdriver);//卸载
    int (*Statfs)(struct Mount *mount, struct statfs *sbp);//统计文件系统的信息,如该文件系统类型、总大小、可用大小等信息
};

file_operations_vfs | 文件操作接口
struct file_operations_vfs 
{
  int     (*open)(struct file *filep);	//打开文件
  int     (*close)(struct file *filep);	//关闭文件
  ssize_t (*read)(struct file *filep, char *buffer, size_t buflen);	//读文件
  ssize_t (*write)(struct file *filep, const char *buffer, size_t buflen);//写文件
  off_t   (*seek)(struct file *filep, off_t offset, int whence);//寻找,检索 文件
  int     (*ioctl)(struct file *filep, int cmd, unsigned long arg);//对文件的控制命令
  int     (*mmap)(struct file* filep, struct VmMapRegion *region);//内存映射实现<文件/设备 - 线性区的映射>
  /* The two structures need not be common after this point */

#ifndef CONFIG_DISABLE_POLL
  int     (*poll)(struct file *filep, poll_table *fds);	//轮询接口
#endif
  int     (*stat)(struct file *filep, struct stat* st);	//统计接口
  int     (*fallocate)(struct file* filep, int mode, off_t offset, off_t len);
  int     (*fallocate64)(struct file *filep, int mode, off64_t offset, off64_t len);
  int     (*fsync)(struct file *filep);
  ssize_t (*readpage)(struct file *filep, char *buffer, size_t buflen);
  int     (*unlink)(struct Vnode *vnode);
};

PathCache | 路径缓存

PathCache是路径缓存,它通过哈希表存储,利用父节点Vnode的地址和子节点的文件名,可以从PathCache中快速查找到子节点对应的Vnode。当前PageCache仅支持缓存二进制文件,在初次访问文件时通过mmap映射到内存中,下次再访问时,直接从PageCache中读取,可以提升对同一个文件的读写速度。另外基于PageCache可实现以文件为基底的进程间通信。下图展示了文件/目录的查找流程。

LIST_HEAD g_pathCacheHashEntrys[LOSCFG_MAX_PATH_CACHE_SIZE];	//路径缓存哈希表项
struct PathCache {//路径缓存
    struct Vnode *parentVnode;    /* vnode points to the cache */	
    struct Vnode *childVnode;     /* vnode the cache points to */
    LIST_ENTRY parentEntry;       /* list entry for cache list in the parent vnode */
    LIST_ENTRY childEntry;        /* list entry for cache list in the child vnode */
    LIST_ENTRY hashEntry;         /* list entry for buckets in the hash table */
    uint8_t nameLen;              /* length of path component */
#ifdef LOSCFG_DEBUG_VERSION
    int hit;                      /* cache hit count*/
#endif
    char name[0];                 /* path component name */
};
//路径缓存初始化
int PathCacheInit(void)
{
    for (int i = 0; i < LOSCFG_MAX_PATH_CACHE_SIZE; i++) {
        LOS_ListInit(&g_pathCacheHashEntrys[i]);
    }
    return LOS_OK;
}

挂载点管理

当前OpenHarmony内核中,对系统中所有挂载点通过链表进行统一管理。挂载点结构体中,记录了该挂载分区内的所有Vnode。当分区卸载时,会释放分区内的所有Vnode。

static LIST_HEAD *g_mountList = NULL;//挂载链表,上面挂的是系统所有挂载点
struct Mount {
    LIST_ENTRY mountList;              /* mount list */			 //通过本节点将Mount挂到全局Mount链表上
    const struct MountOps *ops;        /* operations of mount */ //挂载操作函数	
    struct Vnode *vnodeBeCovered;      /* vnode we mounted on */ //要被挂载的节点 即 /bin1/vs/sd 对应的 vnode节点
    struct Vnode *vnodeCovered;        /* syncer vnode */		 //要挂载的节点	即/dev/mmcblk0p0 对应的 vnode节点
    struct Vnode *vnodeDev;            /* dev vnode */
    LIST_HEAD vnodeList;               /* list of vnodes */		//链表表头
    int vnodeSize;                     /* size of vnode list */	//节点数量
    LIST_HEAD activeVnodeList;         /* list of active vnodes */	//激活的节点链表
    int activeVnodeSize;               /* szie of active vnodes list *///激活的节点数量
    void *data;                        /* private data */	//私有数据,可使用这个成员作为一个指向它们自己内部数据的指针
    uint32_t hashseed;                 /* Random seed for vfs hash */ //vfs 哈希随机种子
    unsigned long mountFlags;          /* Flags for mount */	//挂载标签
    char pathName[PATH_MAX];           /* path name of mount point */	//挂载点路径名称  /bin1/vs/sd
    char devName[PATH_MAX];            /* path name of dev point */		//设备名称 /dev/mmcblk0p0
};
//分配一个挂载点
struct Mount* MountAlloc(struct Vnode* vnodeBeCovered, struct MountOps* fsop)
{
    struct Mount* mnt = (struct Mount*)zalloc(sizeof(struct Mount));//申请一个mount结构体内存,小内存分配用 zalloc
    if (mnt == NULL) {
        PRINT_ERR("MountAlloc failed no memory!\n");
        return NULL;
    }

    LOS_ListInit(&mnt->activeVnodeList);//初始化激活索引节点链表
    LOS_ListInit(&mnt->vnodeList);//初始化索引节点链表

    mnt->vnodeBeCovered = vnodeBeCovered;//设备将装载到vnodeBeCovered节点上
    vnodeBeCovered->newMount = mnt;//该节点不再是虚拟节点,而作为 设备结点
#ifdef LOSCFG_DRIVERS_RANDOM	//随机值	驱动模块
    HiRandomHwInit();//随机值初始化
    (VOID)HiRandomHwGetInteger(&mnt->hashseed);//用于生成哈希种子
    HiRandomHwDeinit();//随机值反初始化
#else
    mnt->hashseed = (uint32_t)random(); //随机生成哈子种子
#endif
    return mnt;
}

fd管理 | 两种描述符/句柄的关系

Fd(File Descriptor)是描述一个打开的文件/目录的描述符。当前OpenHarmony内核中,fd总规格为896,分为三种类型:

  • 普通文件描述符,系统总数量为512。
    #define CONFIG_NFILE_DESCRIPTORS    512	// 系统文件描述符数量
  • Socket描述符,系统总规格为128。
    #define LWIP_CONFIG_NUM_SOCKETS         128	//socket链接数量
    #define CONFIG_NSOCKET_DESCRIPTORS  LWIP_CONFIG_NUM_SOCKETS 
  • 消息队列描述符,系统总规格为256。
    #define CONFIG_NQUEUE_DESCRIPTORS    256

请记住,在OpenHarmony内核中,在不同的层面会有两种文件句柄::

  • 系统文件描述符(sysfd),由内核统一管理,和进程描述符形成映射关系,一个sysfd可以被多个profd映射,也就是说打开一个文件只会占用一个sysfd,但可以占用多个profd,即一个文件被多个进程打开.

  • 进程文件描述符(profd),由进程管理的叫进程文件描述符,内核对不同进程中的fd进行隔离,即进程只能访问本进程的fd.举例说明之间的关系:

    文件            sysfd     profd
    吃个桃桃.mp4        10    13(A进程)
    吃个桃桃.mp4        10    3(B进程)
    容嬷嬷被冤枉.txt    12    3(A进程)
    容嬷嬷被冤枉.txt    12    3(C进程)

  • 不同进程的相同fd往往指向不同的文件,但有三个fd例外

    • STDIN_FILENO(fd = 0) 标准输入 接收键盘的输入
    • STDOUT_FILENO(fd = 1) 标准输出 向屏幕输出
    • STDERR_FILENO(fd = 2) 标准错误 向屏幕输出
      sysfd和所有的profd的(0,1,2)号都是它们.熟知的 printf 就是向 STDOUT_FILENO中写入数据.
  • 具体涉及结构体

    struct file_table_s {//进程fd <--> 系统FD绑定
        intptr_t sysFd; /* system fd associate with the tg_filelist index */
    };//sysFd的默认值是-1
    struct fd_table_s {//进程fd表结构体
        unsigned int max_fds;//进程的文件描述符最多有256个
        struct file_table_s *ft_fds; /* process fd array associate with system fd *///系统分配给进程的FD数组 ,fd 默认是 -1
        fd_set *proc_fds;	//进程fd管理位,用bitmap管理FD使用情况,默认打开了 0,1,2	       (stdin,stdout,stderr)
        fd_set *cloexec_fds;
        sem_t ft_sem; /* manage access to the file table */ //管理对文件表的访问的信号量
    };
    struct files_struct {//进程文件表结构体
        int count;				      //持有的文件数量
        struct fd_table_s *fdt; //持有的文件表
        unsigned int file_lock;	//文件互斥锁
        unsigned int next_fd;	  //下一个fd
    #ifdef VFS_USING_WORKDIR
        spinlock_t workdir_lock;	//工作区目录自旋锁
        char workdir[PATH_MAX];		//工作区路径,最大 256个字符
    #endif
    };
    typedef struct ProcessCB {
    #ifdef LOSCFG_FS_VFS
        struct files_struct *files;        /**< Files held by the process */ //进程所持有的所有文件,注者称之为进程的文件管理器
    #endif	//每个进程都有属于自己的文件管理器,记录对文件的操作. 注意:一个文件可以被多个进程操作
    }

解读

  • 鸿蒙的每个进程ProcessCB都有属于自己的进程的文件描述符files_struct,该进程和文件系统有关的信息都由它表达.
  • 搞清楚 files_struct,fd_table_s,file_table_s三个结构体的关系就明白了进度描述符和系统描述符的关系.
  • fd_table_s是由alloc_fd_table分配的一个结构体数组,用于存放进程的文件描述符
        //分配进程文件表,初始化 fd_table_s 结构体中每个数据,包括系统FD(0,1,2)的绑定
        static struct fd_table_s * alloc_fd_table(unsigned int numbers)
        {
          struct fd_table_s *fdt;
          void *data;
          fdt = LOS_MemAlloc(m_aucSysMem0, sizeof(struct fd_table_s));//申请内存
          if (!fdt)
            {
              goto out;
            }
          fdt->max_fds = numbers;//最大数量
          if (!numbers)
            {
              fdt->ft_fds = NULL;
              fdt->proc_fds = NULL;
              return fdt;
            }
          data = LOS_MemAlloc(m_aucSysMem0, numbers * sizeof(struct file_table_s));//这是和系统描述符的绑定
          if (!data)
            {
              goto out_fdt;
            }
          fdt->ft_fds = data;//这其实是个 int[] 数组,
          for (int i = STDERR_FILENO + 1; i < numbers; i++)
            {
                fdt->ft_fds[i].sysFd = -1;//默认的系统描述符都为-1,即还没有和任何系统文件描述符绑定
            }
          data = LOS_MemAlloc(m_aucSysMem0, sizeof(fd_set));//管理FD的 bitmap 
          if (!data)
            {
              goto out_arr;
            }
          (VOID)memset_s(data, sizeof(fd_set), 0, sizeof(fd_set));
          fdt->proc_fds = data;
          alloc_std_fd(fdt);//分配标准的0,1,2系统文件描述符,这样做的结果是任务进程都可以写系统文件(0,1,2)
          (void)sem_init(&fdt->ft_sem, 0, 1);//互斥量初始化
          return fdt;
        out_arr:
          (VOID)LOS_MemFree(m_aucSysMem0, fdt->ft_fds);
        out_fdt:
          (VOID)LOS_MemFree(m_aucSysMem0, fdt);
        out:
          return NULL;
        }
  • file_table_s记录 sysfdprofd的绑定关系.fdt->ft_fds[i].sysFd中的i就是profd

鸿蒙全栈开发全新学习指南

也为了积极培养鸿蒙生态人才,让大家都能学习到鸿蒙开发最新的技术,针对一些在职人员、0基础小白、应届生/计算机专业、鸿蒙爱好者等人群,整理了一套纯血版鸿蒙(HarmonyOS Next)全栈开发技术的学习路线【包含了大厂APP实战项目开发】

本路线共分为四个阶段:

第一阶段:鸿蒙初中级开发必备技能

第二阶段:鸿蒙南北双向高工技能基础:gitee.com/MNxiaona/733GH

第三阶段:应用开发中高级就业技术

第四阶段:全网首发-工业级南向设备开发就业技术:https://gitee.com/MNxiaona/733GH

《鸿蒙 (Harmony OS)开发学习手册》(共计892页)

如何快速入门?

1.基本概念
2.构建第一个ArkTS应用
3.……

开发基础知识:gitee.com/MNxiaona/733GH

1.应用基础知识
2.配置文件
3.应用数据管理
4.应用安全管理
5.应用隐私保护
6.三方应用调用管控机制
7.资源分类与访问
8.学习ArkTS语言
9.……

基于ArkTS 开发

1.Ability开发
2.UI开发
3.公共事件与通知
4.窗口管理
5.媒体
6.安全
7.网络与链接
8.电话服务
9.数据管理
10.后台任务(Background Task)管理
11.设备管理
12.设备使用信息统计
13.DFX
14.国际化开发
15.折叠屏系列
16.……

鸿蒙开发面试真题(含参考答案):gitee.com/MNxiaona/733GH

鸿蒙入门教学视频:

美团APP实战开发教学:gitee.com/MNxiaona/733GH

写在最后

  • 如果你觉得这篇内容对你还蛮有帮助,我想邀请你帮我三个小忙:
  • 点赞,转发,有你们的 『点赞和评论』,才是我创造的动力。
  • 关注小编,同时可以期待后续文章ing🚀,不定期分享原创知识。
  • 想要获取更多完整鸿蒙最新学习资源,请移步前往小编:gitee.com/MNxiaona/733GH

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1662074.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

开源相机管理库Aravis例程学习(七)——chunk-parser

开源相机管理库Aravis例程学习&#xff08;七&#xff09;——chunk-parser 简介例程代码函数说明arv_camera_create_chunk_parserarv_camera_set_chunksarv_chunk_parser_get_integer_value 简介 本文针对官方例程中的&#xff1a;05-chunk-parser做简单的讲解。并介绍其中调…

钓场是怎么收费看时间的,钓鱼钓虾计时计费管理系统软件

钓场是怎么收费看时间的&#xff0c;钓鱼钓虾计时计费管理系统软件 一、前言 以下软件操作教程以&#xff0c;佳易王钓场计时计费管理软件为例说明 软件文件下载可以点击最下方官网卡片——软件下载——试用版软件下载 佳易王钓场计时计费管理软件&#xff0c;支持百人或千人…

sql-labs通关详解(1-10)

1.less-1 1.判断类型 由此判断是字符型漏洞由单引号闭合。 2.判断 字段个数 http://192.168.190.145/sqli-labs/Less-1/?id1 order by 3-- 3.获取数据库名 -1 union select 1,2,database()-- 4.获取表名 -1 union select 1,2,group_concat(table_name) from information_…

权限束缚术--权限提升你需要知道这些

前言 欢迎来到我的博客 个人主页:北岭敲键盘的荒漠猫-CSDN博客 本文主要对渗透测试中权限提升的一些基础知识进行整理 并不包含权限提升的具体操作 适合要入门权限提升的朋友 提权的重要性 我们在渗透网站时&#xff0c;我们往往会拿到一些权限&#xff0c;但是我们的权限有…

目标检测算法YOLOv7简介

YOLOv7由Chien-Yao Wang等人于2022年提出&#xff0c;论文名为&#xff1a;《YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors》&#xff0c;论文见&#xff1a;https://arxiv.org/pdf/2207.02696 &#xff0c;项目网页&#xff…

HC-05的简介与使用

蓝牙概述 蓝牙&#xff08;Bluetooth&#xff09;是一种用于无线通信的技术标准&#xff0c;允许设备在短距离内进行数据交换和通信。它是由爱立信&#xff08;Ericsson&#xff09;公司在1994年推出的&#xff0c;以取代传统的有线连接方式&#xff0c;使设备之间能够实现低功…

Ansible-Playbook通过role角色部署Lnmp架构

目录​​​​​​​ 一、配置Nginx的Roles角色 1.1编写files/default.conf 1.2编写files/nginx.repo 1.3编写handlers/main.yml 1.4编写tasks/main.yml文件 1.5编写vars/main.yml文件 1.6测试运行结果&#xff0c;并不是真的执行任务 二、配置Mysql的Roles角色 2.1编写…

vue-fontawesome-elementui-icon-picker选择icon框架

第一步&#xff1a;安装vue-fontawesome-elementui-icon-picker依赖 npm install vue-fontawesome-elementui-icon-picker --save-dev 第二步&#xff1a;main.js配置 (放在element ui引入之后) import iconPicker from vue-fontawesome-elementui-icon-picker; Vue.use(ico…

day2_greedyIntervalsLRU/LFU

二、贪心算法之区间调度问题 0.计算一个区间集合中无重复的区间的最大数量(模板) public int intervalSchedule(int[][] intvs) {if (intvs.length 0) return 0;// 按 end 升序排序Arrays.sort(intvs, (a, b) -> Integer.compare(a[1], b[1]));// 至少有一个区间不相交in…

Web3 Tools - Base58

Base58编码 Base58编码是一种用于表示数字的非常见的编码方法。它通常用于加密货币领域&#xff0c;例如比特币和其他加密货币的地址表示。 什么是Base58编码&#xff1f; Base58编码是一种将数字转换为人类可读形式的编码方法。与常见的Base64编码不同&#xff0c;Base58编码…

Docker常用镜像安装

1. mysql 1.1 安装 获取镜像 docker pull mysql:8.0.30创建文件挂载目录 创建容器并运行 docker run -p 3306:3306 --name mysql8 \ -v /home/docker/mysql8/log:/var/log/mysql \ -v /home/docker/mysql8/data:/var/lib/mysql \ -v /home/docker/mysql8/mysql-files:/va…

鸿蒙OpenHarmony开发板解析:【特性配置规则】

特性 特性配置规则 下面介绍feature的声明、定义以及使用方法。 feature的声明 开发前请熟悉鸿蒙开发指导文档&#xff1a;gitee.com/li-shizhen-skin/harmony-os/blob/master/README.md点击或者复制转到。 在部件的bundle.json文件中通过feature_list来声明部件的feature列…

『大模型笔记』Google CEO Sundar Pichai(桑达尔·皮查伊)谈人工智能的未来!

Google CEO Sundar Pichai(桑达尔皮查伊)谈人工智能的未来! 文章目录 一. Google CEO谈人工智能的未来总结摘要观点时间线二. 参考文献中文字幕视频链接,欢迎关注我的xhs账号:Google CEO 皮查伊谈人工智能的未来! 一. Google CEO谈人工智能的未来

VTK 数据类型:规则网格

VTK 数据类型&#xff1a;规则网格 VTK 数据类型&#xff1a;规则网格分类三种规则网格需要的设置实例 VTK 数据类型&#xff1a;规则网格 分类 VTK 有 3 种规则网格&#xff1a; vtkImageData&#xff1a;几何结构和拓扑结构都是规则的。vtkRectilinearGrid&#xff1a;几何…

大语言模型的后处理

后处理的输入 常规意义上的大模型处理流程 import torch from transformers import LlamaForCausalLM, LlamaTokenizer# 加载模型和tokenizer model LlamaForCausalLM.from_pretrained("decapoda-research/llama-7b-hf") tokenizer LlamaTokenizer.from_pretrain…

《Python编程从入门到实践》day24

# 昨日知识点学习 创建外星人从一个到一行 # 主程序snipdef _create_fleet(self):"""创建外星人群"""# 创建一个外星人并计算一行可容纳多少个外星人# 外星人的间距为外星人的宽度alien Alien(self)alien_width alien.rect.widthavailable_sp…

使用Vue调用ColaAI Plus大模型,实现聊天(简陋版)

首先去百度文心注册申请自己的api 官网地址&#xff1a;LuckyCola 注册点开个人中心 查看这个文档自己申请一个ColaAI Plus定制增强大模型API | LuckyColahttps://luckycola.com.cn/public/docs/shares/api/colaAi.html来到vue的页面 写个样式 <template><Header …

Springboot+Vue项目-基于Java+MySQL的宠物商城网站系统(附源码+演示视频+LW)

大家好&#xff01;我是程序猿老A&#xff0c;感谢您阅读本文&#xff0c;欢迎一键三连哦。 &#x1f49e;当前专栏&#xff1a;Java毕业设计 精彩专栏推荐&#x1f447;&#x1f3fb;&#x1f447;&#x1f3fb;&#x1f447;&#x1f3fb; &#x1f380; Python毕业设计 &…

调试记录 CPU PCIE 找不到设备,AC 耦合电容的问题

1. 问题 现象&#xff1a; 1. 国产CPU的主板&#xff0c;主板内的PCIE 设备找的到&#xff0c;但是另一块板子上连接的PCIE 设备找不到。 2. 排查问题在哪里的计划 1. 检查原理图先排除信号定义的问题&#xff0c; TXRX是否反接。 2. 示波器检查PCIE 的时钟频率是否正确。 3. …

图神经网络(GNNs)在时间序列分析中的应用

时间序列数据是记录动态系统测量的主要数据类型&#xff0c;由物理传感器和在线过程&#xff08;虚拟传感器&#xff09;大量生成。时间序列分析对于解锁可用数据中隐含的丰富信息至关重要。随着图神经网络&#xff08;GNNs&#xff09;的最近进展&#xff0c;基于GNN的方法在时…