【数据结构】栈的实现以及数组和链表的优缺点

news2024/11/27 2:32:25

个人主页:一代…
个人专栏:数据结构
在这里插入图片描述

1.栈

1.1栈的概念及结构

栈:一种特殊的线性表,其只允许在固定的一端进行插入和删除元素操作。进行数据插入和删除操作的一端
称为栈顶,另一端称为栈底。栈中的数据元素遵守后进先出LIFO(Last In First Out)的原则。
压栈:栈的插入操作叫做进栈/压栈/入栈,入数据在栈顶。
出栈:栈的删除操作叫做出栈。出数据也在栈顶。

在这里插入图片描述
在这里插入图片描述

栈的实现

栈的实现可以用两种线性结构来实现,一种是数组,另一种是链表。

那么用哪种来实现栈比较合适呢?
那我们就要来考虑数组和链表的各自的好处了。

**学过顺序表的小伙伴都知道顺序表的底层是用数组来实现的。那么顺序表和链表有什么区别呢?

  1. 存储空间:
    顺序表的物理和逻辑上是连续的
    链表的物理上不一定连续,但逻辑上连续
  2. 随机访问
    顺序表随机访问某一个元素时时间复杂度为O(1)
    链表访问某一个元素时时间复杂度尾O(N)
  3. 在任意位置插入和删除元素
    顺序表插入和删除元素的时间复杂度为O(N)
    链表的时间复杂度为O(N)
  4. 空间利用
    动态顺序表空间不够是需要扩容,可能造成空间浪费
    链表没容量的概念,新增一个节点就malloc一个大小为STDataType的空间
  5. 缓存利用率
    顺序表的缓存利用率高
    链表的缓存利用率低

缓存利用率
在这里插入图片描述

这里主存就相当于内存,本地磁盘就相当于硬盘,这两个的一个区别就是带点和不带电的区别,内存和硬盘在带电状态下都能正常工作,但它们的工作方式和工作内容完全不同。
内存是易失性的,即当电源关闭时,内存中的数据会丢失。而硬盘是非易失性的,即使电源关闭,数据也会保留。
在不带电状态下,硬盘可以更安全地进行物理操作,而内存则无法进行任何操作(因为内存模块本身不包含任何电源或机械部件)。

    这里我浅浅讲一下顺序表和链表缓存利用率的区别

数组(顺序表)和链表在缓存利用率上的区别主要体现在它们的物理存储结构和访问方式上。
在访问一块数据内存空间时,要先把内存加载到缓存,在对其进行访问,而其并不是没此访问一个内存就将其加载到缓存,而是访问一块内存时将其后面的连续的内存一起加载到缓存,然后在对其进行访问。
数组是一块连续的内存空间,元素紧密排列,空间效率更高。这种物理空间的连续性使得数组在访问数据时具有更高的缓存利用率。当CPU执行指令运算需要访问数据时,会先去缓存中查找这个数据。如果数据已经在缓存中(缓存命中),那么CPU就可以直接从缓存中读取数据,而不需要从主存中读取,从而提高了程序的运行效率。由于数组的物理地址是连续的,因此数组中的数据在缓存中的命中率更高,减少了从主存中读取数据的次数,从而提高了缓存利用率。
相比之下,链表是由节点组成,节点之间通过引用(指针)连接。链表在添加和删除元素时只需要改变指针的指向,以节点为单位进行动态内存分配和回收,灵活并且插入和删除效率高。但是,链表的节点在物理存储上是不连续的,因此链表中的数据在缓存中的命中率相对较低。当CPU需要访问链表中的数据时,可能需要频繁地从主存中读取数据到缓存中,降低了缓存利用率,并且会造成缓存污染。
综上所述,数组(顺序表)由于物理空间的连续性,在缓存利用率上通常优于链表。这也是为什么在需要频繁访问数据的场景下,如数组的遍历、查找等操作,使用数组通常会比链表更高效。

所以链表和数组实现栈的区别并不大,但数组比链表更优一些。
(注:链表实现栈可以用单链表,用首元结点作栈顶,也可以用双链表来实现)
下面我们就开是讲解栈的实现

栈的初始化

void StackInit(Stack* ps)
{
	assert(ps);
	ps->_capacity = 0;
	//top指向栈顶数据的下一个位置
	ps->_top = 0;
	//top指向栈顶数据
	//ps->_top = -1;
	ps->_a = NULL;
}

这里初始化top既可以为0,也可以为-1,为0为top指向栈顶数据的下一个位置,为-1时指向栈顶数据。
在这里插入图片描述

栈的销毁

void StackDestroy(Stack* ps)
{
	assert(ps);
	free(ps->_a);
	ps->_a = NULL;
	ps->_top = ps->_capacity = 0;
}

入栈

void StackPush(Stack* ps, STDataType data)
{
	assert(ps);
	//扩容
	if (ps->_top == ps->_capacity)
	{
		int newcapacity = ps->_capacity == 0 ? 4 : 2 * ps->_capacity;
		STDataType* tmp = (STDataType*)realloc(ps->_a, newcapacity * sizeof(STDataType));
		if (tmp == NULL)
		{
			perror("realloc fail");
			return;
		}
		ps->_a = tmp;
		ps->_capacity = newcapacity;
	}
	ps->_a[ps->_top] = data;
	ps->_top++;
}

出栈

void StackPop(Stack* ps)
{
	assert(ps);
	assert(ps->_top > 0);
	ps->_top--;
}

取出栈顶元素

STDataType StackTop(Stack* ps)
{
	assert(ps);
	assert(ps->_top > 0);
	return ps->_a[ps->_top - 1];
}

栈的大小

int StackSize(Stack* ps)
{
	assert(ps);
	return ps->_top;
}

栈是否为空

void StackDestroy(Stack* ps)
{
	assert(ps);
	free(ps->_a);
	ps->_a = NULL;
	ps->_top = ps->_capacity = 0;
}

栈的全部代码
stack.h

#define  _CRT_SECURE_NO_WARNINGS 1
// 支持动态增长的栈
#include<stdio.h>
#include<assert.h>
#include<stdlib.h>

typedef int STDataType;
typedef struct Stack
{
	STDataType* _a;
	int _top;		// 栈顶
	int _capacity;  // 容量 
}Stack;
// 初始化栈 
void StackInit(Stack* ps);
// 入栈 
void StackPush(Stack* ps, STDataType data);
// 出栈 
void StackPop(Stack* ps);
// 获取栈顶元素 
STDataType StackTop(Stack* ps);
// 获取栈中有效元素个数 
int StackSize(Stack* ps);
// 检测栈是否为空,如果为空返回非零结果,如果不为空返回0 
int StackEmpty(Stack* ps);
// 销毁栈 
void StackDestroy(Stack* ps);

stack.c

#define  _CRT_SECURE_NO_WARNINGS 1
#include"stack.h"

void StackInit(Stack* ps)
{
	assert(ps);
	ps->_capacity = 0;
	//top指向栈顶数据的下一个位置
	ps->_top = 0;
	//top指向栈顶数据
	//ps->_top = -1;
	ps->_a = NULL;
}

void StackPush(Stack* ps, STDataType data)
{
	assert(ps);
	//扩容
	if (ps->_top == ps->_capacity)
	{
		int newcapacity = ps->_capacity == 0 ? 4 : 2 * ps->_capacity;
		STDataType* tmp = (STDataType*)realloc(ps->_a, newcapacity * sizeof(STDataType));
		if (tmp == NULL)
		{
			perror("relloc fail");
			return;
		}
		ps->_a = tmp;
		ps->_capacity = newcapacity;
	}
	ps->_a[ps->_top] = data;
	ps->_top++;
}

void StackPop(Stack* ps)
{
	assert(ps);
	assert(ps->_top > 0);
	ps->_top--;
}

STDataType StackTop(Stack* ps)
{
	assert(ps);
	assert(ps->_top > 0);
	return ps->_a[ps->_top - 1];
}

int StackSize(Stack* ps)
{
	assert(ps);
	return ps->_top;
}

int StackEmpty(Stack* ps)
{
	assert(ps);
	return ps->_top == 0;
}

void StackDestroy(Stack* ps)
{
	assert(ps);
	free(ps->_a);
	ps->_a = NULL;
	ps->_top = ps->_capacity = 0;
}

test.c


#include"stack.h"
int main()
{
	Stack st;
	StackInit(&st);
	StackPush(&st, 5);
	StackPush(&st, 3);
	StackPush(&st, 4);
	StackPush(&st, 6);
	StackPop(&st);
	StackPop(&st);
	StackPop(&st);
	printf("%d\n",StackSize(&st));
	if (StackEmpty(&st))
	{
		printf("栈为空\n");
	}
	else
	{
		printf("栈不为空\n");
	}
	int ret=StackTop(&st);
	printf("%d\n", ret);
	if (!StackEmpty(&st))
	{
		for (int i = 0; i < st._top; i++)
		{
			printf("%d ", st._a[i]);
		}
	}
	StackDestroy(&st);
	return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1659736.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

小程序(三)

十三、自定义组件 &#xff08;二&#xff09;数据方法声明位置 在js文件中 A、数据声明位置&#xff1a;data中 B、方法声明位置methods中&#xff0c;这点和普通页面不同&#xff01; Component({/*** 组件的属性列表*/properties: {},/*** 组件的初始数据*/data: {isCh…

在Ubuntu安装Carla时按照官方的教程将下载好的资源包解压放到Unreal\CarlaUE4\Content\Carla后执行./Update.sh

在Ubuntu安装Carla时按照官方的教程将下载好的资源包解压放到 Unreal\CarlaUE4\Content\Carla后执行./Update.sh 结果出现&#xff0c;将原来的Carla文件夹备份了有创建了一个新的空白Carla文件夹 原来自己下载解压后就不用再执行./Update.sh这个了&#xff0c;这个命令就是…

【Redis分布式缓存】分片集群

Redis 分片集群 搭建分片集群 集群结构 分片集群需要的节点数量较多&#xff0c;这里我们搭建一个最小的分片集群&#xff0c;包含3个master节点&#xff0c;每个master包含一个slave节点&#xff0c;结构如下&#xff1a; 这里我们会在同一台虚拟机中开启6个redis实例&…

逻辑回归和神经网络(原理+应用)

目录 一、背景介绍 二、题目要求 三、逻辑回归&#xff08;Logistic Regression&#xff09;与神经网络 四、输入输出变量 五、效果评估Gains介绍 六、模型构建 具体应用&#xff1a;预测客户是否有意预订有线电视交互服务 一、背景介绍 当今时代&#xff0c;有线电视交…

【JavaEE 初阶(四)】多线程进阶

❣博主主页: 33的博客❣ ▶️文章专栏分类:JavaEE◀️ &#x1f69a;我的代码仓库: 33的代码仓库&#x1f69a; &#x1faf5;&#x1faf5;&#x1faf5;关注我带你了解更多线程知识 目录 1.前言2.常见的锁策略2.1悲观锁vs乐观锁2.2轻量级锁vs重量级锁2.3自旋锁vs挂起锁2.4读写…

JS控制台代码:淘宝PC网页付款页面定时确认付款

淘宝定时抢东西用的 必须先输入完正确密码&#xff0c;考虑上了网络延迟&#xff0c;程序提前一秒钟点击确认&#xff0c;可自行修改&#xff1a; function checkTime() {var now new Date();var hours now.getHours();var minutes now.getMinutes();var seconds now.getS…

线程池核心原理浅析

前言 由于系统资源是有限的&#xff0c;为了降低资源消耗&#xff0c;提高系统的性能和稳定性&#xff0c;引入了线程池对线程进行统一的管理和监控&#xff0c;本文将详细讲解线程池的使用、原理。 为什么使用线程池 池化思想 线程池主要用到了池化思想&#xff0c;池化思想…

vivado 低级别 SVF JTAG 命令

低级别 SVF JTAG 命令 注释 &#xff1a; 在 Versal ™ 器件上不支持 SVF 。 低级别 JTAG 命令允许您扫描多个 FPGA JTAG 链。针对链操作所生成的 SVF 命令使用这些低级别命令来访问链中的 FPGA 。 报头数据寄存器 (HDR) 和报头指令寄存器 (HIR) 语法 HDR length […

健康知识集锦

页面 页面代码 <% layout(/layouts/default.html, {title: 健康知识管理, libs: [dataGrid]}){ %> <div class"main-content"><div class"box box-main"><div class"box-header"><div class"box-title"&g…

CDGA|电子行业数据治理六大痛点及突围之道

CDGA|电子行业数据治理六大痛点及突围之道 随着信息技术的迅猛发展&#xff0c;电子行业对数据的需求和依赖日益增强。然而&#xff0c;数据治理作为确保数据质量、安全性及有效利用的关键环节&#xff0c;在电子行业中却面临着一系列痛点。本文将深入探讨电子行业数据治理的六…

基于LMV358的负电源架构

嘿UU们&#xff0c;中午好啊&#xff01;吃了没&#xff1f;算算时间我的餐桌上应该快上杨梅和鱼胶冻了。 今天看某群&#xff0c;突然想到Jim williams的书里一个架构&#xff0c;但老爷子的东西是正负输出的&#xff0c;而且略微有点麻烦&#xff0c;我就想怎么样整个更适合…

实现网站HTTPS访问:全面指南

在当今网络安全至关重要的时代&#xff0c;HTTPS已经成为网站安全的基本标准。HTTPS&#xff08;超文本传输安全协议&#xff09;通过在HTTP协议基础上加入SSL/TLS加密层&#xff0c;确保了数据在用户浏览器和服务器之间的传输是加密的&#xff0c;有效防止数据被窃取或篡改&am…

专题六_模拟(2)

目录 6. Z 字形变换 解析 题解 38. 外观数列 解析 题解 6. Z 字形变换 6. Z 字形变换 - 力扣&#xff08;LeetCode&#xff09; 解析 题解 class Solution { public:string convert(string s, int numRows) {// 42.专题六_模拟_N 字形变换_C// 处理边界情况if (numRows …

多线程典型例子(4)——线程池

文章目录 一、线程池的基本情况1.1、使用线程池的必要性1.2、线程池为什么比直接在系统中创建线程更高效&#xff1f;1.2.1、纯内核态操作1.2.2、纯用户态操作 1.3、那为什么用户态操作比内核态操作更高效&#xff1f;二、如何在Java中使用线程池2.1、ExecutorService2.1、Thre…

常见JavaWeb混合Vue.js课设中的要点

在校期间我们要做很多课设&#xff0c;实际上&#xff0c;学校教的大概率不足以让多数学生独立做出系统。在网上随便一搜&#xff0c;大抵都是千篇一律的“XXXX”管理系统。这些项目出于方便&#xff0c;往往采用vue作为前端框架而不用原生的JavaScript。 vue的本质要点是避免原…

FPGA HDMI Sensor无线航模摄像头

FPGA方案&#xff0c;接收摄像头sensor 图像数据后&#xff0c;通过HDMI输出到后端 客户应用&#xff1a;无线航模摄像头 主要特性&#xff1a; 1.支持2K以下任意分辨率格式 2.支持多种型号sensor 3.支持自适应摄像头配置&#xff0c;并补齐输出时序 4.可定制功能&#xff…

一文详解|影响成长的关键思考(二)

之前写过一篇《一文详解&#xff5c;影响成长的关键思考》&#xff0c;里面对自己工作前几年的心法进行了总结&#xff0c;并分享了出来。现在又工作了一段时间后&#xff0c;有了一些新的体会&#xff0c;想进一步分析一下&#xff0c;于是便有了此文。的确&#xff0c;思考也…

2024服贸会,参展企业媒体宣传报道攻略

传媒如春雨&#xff0c;润物细无声&#xff0c;大家好&#xff0c;我是51媒体网胡老师。 2024年中国国际服务贸易交易会&#xff08;简称“服贸会”&#xff09;是一个重要的国际贸易平台&#xff0c;对于参展企业来说&#xff0c;有效的媒体宣传报道对于提升品牌知名度、扩大…

docker学习笔记(五):harbor仓库搭建与简单应用

harbor私有仓库 简介 Docker容器应用的开发和运行离不开可靠的镜像管理&#xff0c;虽然Docker官方也提供了公共的镜像仓库&#xff0c;但是从安全和效率等方面考虑&#xff0c;部署私有环境内的Registry也是非常必要的。Harbor是由VMware公司开源的企业级的Docker Registry管…

【快捷部署】022_ZooKeeper(3.5.8)

&#x1f4e3;【快捷部署系列】022期信息 编号选型版本操作系统部署形式部署模式复检时间022ZooKeeper3.5.8Ubuntu 20.04tar包单机2024-05-07 一、快捷部署 #!/bin/bash ################################################################################# # 作者&#xff…