【读论文】Gaussian Grouping: Segment and Edit Anything in 3D Scenes

news2025/1/17 22:03:31

Gaussian Grouping: Segment and Edit Anything in 3D Scenes

文章目录

  • Gaussian Grouping: Segment and Edit Anything in 3D Scenes
    • 1. What
    • 2. Why
    • 3. How
      • 3.1 Anything Mask Input and Consistency
      • 3.2 3D Gaussian Rendering and Grouping
      • 3.3 Downstream: Local Gaussian Editing

1. What

What kind of thing is this article going to do (from the abstract and conclusion, try to summarize it in one sentence)

The first 3D Gaussian-based approach to jointly reconstruct and segment anything in the open-world 3D scene.
Each Gaussian with a compact Identity Encoding, supervised by 2D masks by SAM along with introduced 3D spatial consistency regularization, can also be further used for editing.

  • Explanation of Open-world

    An open-world scenario refers to an uncertain, dynamic and complex environment that contains a variety of objects, scenes and tasks.

    Or “open-world scene understanding” refers to the ability of a model to generalize to scenes or environments that it has not been explicitly trained on. In this context, the term “open-world” implies that the model needs to be able to adapt to and understand a wide range of scenes, including those that may be very different from the scenes in its training data.

2. Why

Under what conditions or needs this research plan was proposed (Intro), what problems/deficiencies should be solved at the core, what others have done, and what are the innovation points? (From Introduction and related work)

Maybe contain Background, Question, Others, Innovation:

  • Existing methods [8, 37] rely on manually-labeled datasets or require accurately scanned 3D point clouds [33, 42] as input.
  • Existing NeRFs-based methods [14, 17, 25, 39] are computation-hungry and hard to adjust for the downstream task because the learned neural networks, such as MLPs, cannot decompose each part or module in the 3D scene easily
  • As for Radiance-based Open World Scene Understanding: Unlike our approach, most of these methods are designed for in-domain scene modeling and cannot generalize to open-world scenarios.

3. How

Following this pipeline, we will introduce it in details.

在这里插入图片描述

3.1 Anything Mask Input and Consistency

Shown in Figure 2(a), a set of multi-view captures along with the automatically generated 2D segmentations by SAM, as well as the corresponding cameras calibrated via SfM are inputs.

Shown in Figure 2(b), to assign each 2D mask a unique ID in the 3D scene, a well-trained zero-shot tracker [7] was used to propagate and associate masks. Use colors to represent different segmentation labels, and the results are shown in Figure 2(b)

3.2 3D Gaussian Rendering and Grouping

Shown in Figure 2©, all of the core concepts of this paper were used.

  1. Identity Encoding

    A new parameter, i.e., Identity Encoding is introduced to each Gaussian with original S Θ i = { p i , s i , q i , α i , c i } S_{\Theta_{i}}=\{\mathbf{p}_{i},\mathbf{s}_{i},\mathbf{q}_{i},\alpha_{i},\mathbf{c}_{i}\} SΘi={pi,si,qi,αi,ci}. It is a compact vector of length 16 and similar to Spherical Harmonic (SH) coefficients in representing color, it is differentiable and learnable.

  2. Grouping via Rendering

    In the process of rendering labels, similar to α \alpha α-blending:

    E id = ∑ i ∈ N e i α i ′ ∏ j = 1 i − 1 ( 1 − α j ′ ) , E_{\text{id}}=\sum_{i\in\mathcal{N}}e_i\alpha_i'\prod_{j=1}^{i-1}(1-\alpha_j'), Eid=iNeiαij=1i1(1αj),

    but the denotations are different. e i e_i ei is the Identity Encoding of length 16 for each Gaussian and α i ′ \alpha_i' αi is a new weight, calculated by multiplying opacity α i \alpha_i αi and Σ 2 D \Sigma^{2\mathrm{D}} Σ2D, where Σ 2 D = J W Σ 3 D W T J T \Sigma^{2\mathrm{D}}=JW\Sigma^{3\mathrm{D}}W^TJ^T Σ2D=JWΣ3DWTJT according to [61].

  3. Grouping Loss

    • 2D Identity Loss: Given the rendered 2D features E i d E_{id} Eid before as input, first add a linear layer f f f to recover its feature dimension back to K+1 and then take s o f t m a x ( f ( E i d ) ) softmax (f(Eid)) softmax(f(Eid)) for identity classification. And cross-entropy loss was used.

    • 3D Regularization Loss:

      3D Regularization Loss leverages the 3D spatial consistency, which enforces the Identity Encodings of the top k-nearest 3D Gaussians to be close in their feature distance.

      L 3 d = 1 m ∑ j = 1 m D k l ( P ∥ Q ) = 1 m k ∑ j = 1 m ∑ i = 1 k F ( e j ) log ⁡ ( F ( e j ) F ( e i ′ ) ) \mathcal{L}_{\mathrm{3d}}=\frac{1}{m}\sum_{j=1}^{m}D_{\mathrm{kl}}(P\|Q)=\frac{1}{mk}\sum_{j=1}^{m}\sum_{i=1}^{k}F(e_{j})\log\left(\frac{F(e_{j})}{F(e_{i}^{\prime})}\right) L3d=m1j=1mDkl(PQ)=mk1j=1mi=1kF(ej)log(F(ei)F(ej))

      where P P P contains the sampled Identity Encoding e e e of a 3D Gaussian, while the set Q = { e 1 ′ , e 2 ′ , . . . , e k ′ } Q=\{e_1^{\prime},e_2^{\prime},...,e_k^{\prime}\} Q={e1,e2,...,ek} consists of its k k k nearest neighbors in 3D spatial space.

3.3 Downstream: Local Gaussian Editing

在这里插入图片描述

Pay more attention to inpainting, first, delete the relevant 3D Gaussians and then add a small number of new Gaussians to be supervised by the 2D inpainting results by LAMA [41] during rendering.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1658848.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

用手势掌控PPT,玩转演示新姿势

推荐运行环境 使用anaconda创建环境,以免污染原来的python开发环境conda install python3.9pip install -q mediapipe0.10.0pip install pyautoguiPython: version 3.8 - 3.11PIP: version 20.3 请注意以下的坑 以下为我测试过程中的大坑,请及时避开&am…

【嵌入式开发实验】外部中断 按键 LED灯;定时中断;检测直流电机的转速 液晶屏显示;(附实验代码+注释+实验简析)| 附:步进电机/循迹小车相关

“永远不要停止思考,永远不认输。” 🎯作者主页: 追光者♂🔥 🌸个人简介: 💖[1] 计算机专业硕士研究生💖 🌿[2] 2023年城市之星领跑者TOP1(哈尔滨)🌿 🌟[3] 2022年度博客之星人工智能领域TOP4🌟 🏅[4] 阿里云社区特邀专家博主🏅 �

4. Python的深拷贝、浅拷贝

文章目录 0、先说结论1、浅拷贝修改元素值2、深拷贝修改元素值学习链接 0、先说结论 无论深拷贝还是浅拷贝都会为新对象分配一块新的内存,因此新老对象id不相同。 对于浅拷贝,新老对象内部的可变and不可变元素id都是相同的(在没修改元素值之前)。 对于深…

【限时免费,手慢无】Unity 怪物资源包,MONSTER 动作超丰富,不领后悔!

Unity 怪物资源包,MONSTER 动作超丰富 前言资源包内容领取兑换码 前言 👾 突破想象!惊艳众人的怪物模型登场 👾 今天要向大家介绍一款令人瞩目的游戏怪物模型!这个看似丑陋的小怪物,却有着巨大的潜力&…

JavaWeb之过滤器(Filter)与监听器(Listener)

前言 过滤器(Filter) 1.什么是过滤器 2.过滤器的语法格式 3.使用场景 3.1.如何防止用户未登录就执行后续操作 3.2.设置编码方式--统一设置编码 3.3.加密解密(密码的加密和解密) 3.4.非法文字筛选 3.5.下载资源的限制 监听器(Listener) 1.什么是监听器 2.监听器分类…

目标检测——色素性皮肤病变数据集

引言 亲爱的读者们,您是否在寻找某个特定的数据集,用于研究或项目实践?欢迎您在评论区留言,或者通过公众号私信告诉我,您想要的数据集的类型主题。小编会竭尽全力为您寻找,并在找到后第一时间与您分享。 …

如何理解VMware中的网络模式(NAT、桥接、仅主机)

目录 Ⅰ.NAT模式 Ⅱ.仅主机模式 Ⅲ.桥接模式 Ⅰ.NAT模式 NAT模式:将物理机的网卡作为虚拟交换机的上线链路,将vmware的私有网络转成可以上网的地址进行网络访问,因此在NAT模式下虚拟机是可以访问外部网络的(图一) …

电路板维修【一】

最近喜欢上了电路板维修,经常看很多博主的维修视频,觉得还是颇有收获的(维修板子原来有方法可循),于是做笔记如下: 一.【修了半天也没找到问题,原来是检查方向错了,变频油烟机板维修…

基于SSM的“医院院内物资管理系统”的设计与实现(源码+数据库+文档+PPT)

基于SSM的“医院院内物资管理系统”的设计与实现(源码数据库文档PPT) 开发语言:Java 数据库:MySQL 技术:SSM 工具:IDEA/Ecilpse、Navicat、Maven 系统展示 功能模块图 系统登录页面 用户管理功能模块 模板列表管…

CSS---复合选择器、元素显示模式和背景(三)

一、CSS的复合选择器 1.1 什么是复合选择器 在CSS中,可以根据选择器的类型把选择器分为基础选择器和复合选择器,复合选择器是建立在基础选择器之上,对基本选择器进行组合形成的。 复合选择器是由两个或多个基础选择器连写组成,它…

监控异地组网怎么组网?

监控异地组网是指在不同地域的网络环境下,实现对监控设备的远程访问和管理。在传统的网络环境下,由于网络限制和设备配置等问题,监控设备的远程访问往往受到一定的限制和困扰。为了解决这个问题,引入了天联组网技术,实…

LLM大语言模型(十五):LangChain的Agent中使用自定义的ChatGLM,且底层调用的是remote的ChatGLM3-6B的HTTP服务

背景 本文搭建了一个完整的LangChain的Agent,调用本地启动的ChatGLM3-6B的HTTP server。 为后续的RAG做好了准备。 增加服务端role:observation ChatGLM3的官方demo:openai_api_demo目录 api_server.py文件 class ChatMessage(BaseModel…

英语学习笔记9——How are you today?

How are you today? 你好吗? 词汇 Vocabulary well adj. 好的 n. 井 fine adj. 美好的 两个方面:天气、身体。 搭配:a fine day 晴朗的一天    It’s a fine day today. 今天很晴朗。 good adj. 好的 口语偏多 搭配:Good jo…

【Python技术】使用akshare、pandas高效复盘每日涨停板行业分析

作为一个程序员宝爸,每天的时间很宝贵,工作之余除了辅导孩子作业,就是补充睡眠。 怎么快速高效的进行当天A股涨停板的复盘,便于第二天的跟踪。这里简单写个示例, 获取当天连涨数排序,以及所属行业排序。 …

服务器数据恢复—RAID5磁盘阵列两块盘离线的数据恢复过程

服务器故障: 服务器中有一组由多块硬盘组建的raid5磁盘阵列,服务器阵列中2块硬盘先后掉线导致服务器崩溃。 服务器数据恢复过程: 1、将故障服务器中所有磁盘编号后取出,由硬件工程师对掉线的两块磁盘进行物理故障检测&#xff0c…

AGI 时代,Rust与Python谁是未来的语言?

随着 Rust 在开发者社区中越来越受欢迎,有必要问一下,Rust 会取代 Python 吗?哪一款最适合您?而且,你应该开始学习 Rust 吗?本文将对 Rust 与 Python 进行全面比较。读完本文后,你将对是否要开始…

uniapp:抖音PK进度条(nvue)

nvue中,仿抖音PK进度条效果, <template><view class="index" :style="{width:windowWidth+px,height:index_windowHeight+px,paddingTop:windowTop+px}"><view class="pk"><text class="pk_jindu_left_val fsz-24 …

基于SSM框架弹幕视频网站

采用技术 基于SSM框架弹幕视频网站的设计与实现~ 开发语言&#xff1a;Java 数据库&#xff1a;MySQL 技术&#xff1a;SpringMVCMyBatis 工具&#xff1a;IDEA/Ecilpse、Navicat、Maven 页面展示效果 前台首页 首页 登录 视频信息 商品信息 个人信息 用户模块 我…

ntfs文件系统的优势 NTFS文件系统的特性有哪些 ntfs和fat32有什么区别 苹果电脑怎么管理硬盘

对于数码科技宅在新购得磁盘之后&#xff0c;出于某种原因会在新的磁盘安装操作系统。在安装操作系统时&#xff0c;首先要对磁盘进行分区和格式化&#xff0c;而在此过程中&#xff0c;操作者们需要选择文件系统。文件系统也决定了之后操作的流程程度&#xff0c;一般文件系统…

图像处理的一些操作(3)

图像处理 13.创建主窗口与子图13.1导入模块 加载图片13.2创建窗口13.3创建子图数组 14.定义png图像文件路径15.提取指定帧图像16.图像旋转17.伽马值校正18.检查图像对比度19.强度缩放20 . 绘制直方图20.三通道彩色直方图21.算子21.1Sobel22.2 prewitt 22.滤波器23.绘制图形23.1…