目录
第1关:拦截器的使用
第2关:自定义拦截器
第1关:拦截器的使用
代码文件:
# Define source, channel, sink
#agent名称为a1
# Define source
#source类型配置为avro,监听8888端口,后台会自动发送数据到该端口
#拦截后台发送过来的数据,将y.开头的保留下来
# Define channel
#channel配置为memery
# Define sink
#落地到 hdfs://localhost:9000/flume目录下
#根据时间落地,3s
#数据格式DataStream
a1.sources = source1
a1.sinks = sink1
a1.channels = channel1
# 配置source组件
a1.sources.source1.type = avro
a1.sources.source1.bind = 127.0.0.1
a1.sources.source1.port = 8888
##定义文件上传完后的后缀,默认是.COMPLETED
a1.sources.source1.fileSuffix=.FINISHED
##默认是2048,如果文件行数据量超过2048字节(1k),会被截断,导致数据丢失
a1.sources.source1.deserializer.maxLineLength=5120
#正则过滤拦截器
a1.sources.source1.interceptors = i1
a1.sources.source1.interceptors.i1.type = regex_filter
a1.sources.source1.interceptors.i1.regex = ^y.*
#如果excludeEvents设为false,表示过滤掉不是以A开头的events。
#如果excludeEvents设为true,则表示过滤掉以A开头的events。
a1.sources.source1.interceptors.i1.excludeEvents = false
# 配置sink组件
a1.sinks.sink1.type = hdfs
a1.sinks.sink1.hdfs.path =hdfs://localhost:9000/flume
#上传文件的前缀
a1.sinks.sink1.hdfs.filePrefix = FlumeData.
#上传文件的后缀
a1.sinks.sink1.hdfs.fileSuffix = .log
#积攒多少个Event才flush到HDFS一次
a1.sinks.sink1.hdfs.batchSize= 100
a1.sinks.sink1.hdfs.fileType = DataStream
a1.sinks.sink1.hdfs.writeFormat =Text
## roll:滚动切换:控制写文件的切换规则
## 按文件体积(字节)来切
a1.sinks.sink1.hdfs.rollSize = 512000
## 按event条数切
a1.sinks.sink1.hdfs.rollCount = 1000000
## 按时间间隔切换文件,多久生成一个新的文件
a1.sinks.sink1.hdfs.rollInterval = 4
## 控制生成目录的规则
a1.sinks.sink1.hdfs.round = true
##多少时间单位创建一个新的文件夹
a1.sinks.sink1.hdfs.roundValue = 10
a1.sinks.sink1.hdfs.roundUnit = minute
#是否使用本地时间戳
a1.sinks.sink1.hdfs.useLocalTimeStamp = true
# channel组件配置
a1.channels.channel1.type = memory
## event条数
a1.channels.channel1.capacity = 500000
##flume事务控制所需要的缓存容量600条event
a1.channels.channel1.transactionCapacity = 600
# 绑定source、channel和sink之间的连接
a1.sources.source1.channels = channel1
a1.sinks.sink1.channel = channel1
命令行代码:
start-dfs.sh
hadoop dfs -mkdir /flume
第2关:自定义拦截器
代码文件:
package com.yy;
/**
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
import java.util.List;
import java.util.Map;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
import org.apache.commons.lang.StringUtils;
import org.apache.flume.Context;
import org.apache.flume.Event;
import org.apache.flume.interceptor.Interceptor;
import org.apache.flume.interceptor.RegexExtractorInterceptorPassThroughSerializer;
import org.apache.flume.interceptor.RegexExtractorInterceptorSerializer;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import com.google.common.base.Charsets;
import com.google.common.base.Preconditions;
import com.google.common.base.Throwables;
import com.google.common.collect.Lists;
public class RegexExtractorExtInterceptor implements Interceptor {
static final String REGEX = "regex";
static final String SERIALIZERS = "serializers";
// 增加代码开始
static final String EXTRACTOR_HEADER = "extractorHeader";
static final boolean DEFAULT_EXTRACTOR_HEADER = false;
static final String EXTRACTOR_HEADER_KEY = "extractorHeaderKey";
// 增加代码结束
private static final Logger logger = LoggerFactory
.getLogger(RegexExtractorExtInterceptor.class);
private final Pattern regex;
private final List<NameAndSerializer> serializers;
// 增加代码开始
private final boolean extractorHeader;
private final String extractorHeaderKey;
// 增加代码结束
private RegexExtractorExtInterceptor(Pattern regex,
List<NameAndSerializer> serializers, boolean extractorHeader,
String extractorHeaderKey) {
this.regex = regex;
this.serializers = serializers;
this.extractorHeader = extractorHeader;
this.extractorHeaderKey = extractorHeaderKey;
}
@Override
public void initialize() {
// NO-OP...
}
@Override
public void close() {
// NO-OP...
}
@Override
public Event intercept(Event event) {
String tmpStr;
if(extractorHeader)
{
tmpStr = event.getHeaders().get(extractorHeaderKey);
}
else
{
tmpStr=new String(event.getBody(),
Charsets.UTF_8);
}
Matcher matcher = regex.matcher(tmpStr);
Map<String, String> headers = event.getHeaders();
if (matcher.find()) {
for (int group = 0, count = matcher.groupCount(); group < count; group++) {
int groupIndex = group + 1;
if (groupIndex > serializers.size()) {
if (logger.isDebugEnabled()) {
logger.debug(
"Skipping group {} to {} due to missing serializer",
group, count);
}
break;
}
NameAndSerializer serializer = serializers.get(group);
if (logger.isDebugEnabled()) {
logger.debug("Serializing {} using {}",
serializer.headerName, serializer.serializer);
}
headers.put(serializer.headerName, serializer.serializer
.serialize(matcher.group(groupIndex)));
}
}
return event;
}
@Override
public List<Event> intercept(List<Event> events) {
List<Event> intercepted = Lists.newArrayListWithCapacity(events.size());
for (Event event : events) {
Event interceptedEvent = intercept(event);
if (interceptedEvent != null) {
intercepted.add(interceptedEvent);
}
}
return intercepted;
}
public static class Builder implements Interceptor.Builder {
private Pattern regex;
private List<NameAndSerializer> serializerList;
// 增加代码开始
private boolean extractorHeader;
private String extractorHeaderKey;
// 增加代码结束
private final RegexExtractorInterceptorSerializer defaultSerializer = new RegexExtractorInterceptorPassThroughSerializer();
@Override
public void configure(Context context) {
String regexString = context.getString(REGEX);
Preconditions.checkArgument(!StringUtils.isEmpty(regexString),
"Must supply a valid regex string");
regex = Pattern.compile(regexString);
regex.pattern();
regex.matcher("").groupCount();
configureSerializers(context);
// 增加代码开始
extractorHeader = context.getBoolean(EXTRACTOR_HEADER,
DEFAULT_EXTRACTOR_HEADER);
if (extractorHeader) {
extractorHeaderKey = context.getString(EXTRACTOR_HEADER_KEY);
Preconditions.checkArgument(
!StringUtils.isEmpty(extractorHeaderKey),
"必须指定要抽取内容的header key");
}
// 增加代码结束
}
private void configureSerializers(Context context) {
String serializerListStr = context.getString(SERIALIZERS);
Preconditions.checkArgument(
!StringUtils.isEmpty(serializerListStr),
"Must supply at least one name and serializer");
String[] serializerNames = serializerListStr.split("\\s+");
Context serializerContexts = new Context(
context.getSubProperties(SERIALIZERS + "."));
serializerList = Lists
.newArrayListWithCapacity(serializerNames.length);
for (String serializerName : serializerNames) {
Context serializerContext = new Context(
serializerContexts.getSubProperties(serializerName
+ "."));
String type = serializerContext.getString("type", "DEFAULT");
String name = serializerContext.getString("name");
Preconditions.checkArgument(!StringUtils.isEmpty(name),
"Supplied name cannot be empty.");
if ("DEFAULT".equals(type)) {
serializerList.add(new NameAndSerializer(name,
defaultSerializer));
} else {
serializerList.add(new NameAndSerializer(name,
getCustomSerializer(type, serializerContext)));
}
}
}
private RegexExtractorInterceptorSerializer getCustomSerializer(
String clazzName, Context context) {
try {
RegexExtractorInterceptorSerializer serializer = (RegexExtractorInterceptorSerializer) Class
.forName(clazzName).newInstance();
serializer.configure(context);
return serializer;
} catch (Exception e) {
logger.error("Could not instantiate event serializer.", e);
Throwables.propagate(e);
}
return defaultSerializer;
}
@Override
public Interceptor build() {
Preconditions.checkArgument(regex != null,
"Regex pattern was misconfigured");
Preconditions.checkArgument(serializerList.size() > 0,
"Must supply a valid group match id list");
return new RegexExtractorExtInterceptor(regex, serializerList,
extractorHeader, extractorHeaderKey);
}
}
static class NameAndSerializer {
private final String headerName;
private final RegexExtractorInterceptorSerializer serializer;
public NameAndSerializer(String headerName,
RegexExtractorInterceptorSerializer serializer) {
this.headerName = headerName;
this.serializer = serializer;
}
}
}
flume.conf 的配置具体步骤:
1.首先点击右上角的文件夹找到Flume1
2.点击图片中的flume.conf
3.点击后将以下的配置文件进行配置
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# The configuration file needs to define the sources,
# the channels and the sinks.
# Sources, channels and sinks are defined per agent,
# in this case called 'agent'
# Define source, channel, sink
#agent名为a1;
# Define and configure an Spool directory source
#采集 /opt/flume/data目录下所有文件
# Configure channel
#channel选择memery
# Define and configure a hdfs sink
#落地到hdfs的hdfs://localhost:9000/flume/文件名的前缀/文件名上的日期
#文件格式设为DataStream
#根据时间回滚,3s
a1.sources=source1
a1.channels=channel1
a1.sinks=sink1
a1.sources.source1.type=spooldir
a1.sources.source1.spoolDir=/opt/flume/data
a1.sources.source1.fileHeader=true
a1.sources.source1.basenameHeader=true
a1.sources.source1.interceptors=i1
a1.sources.source1.interceptors.i1.type=com.yy.RegexExtractorExtInterceptor$Builder
a1.sources.source1.interceptors.i1.regex=(.*)\\.(.*)\\.(.*)
a1.sources.source1.interceptors.i1.extractorHeader=true
a1.sources.source1.interceptors.i1.extractorHeaderKey=basename
a1.sources.source1.interceptors.i1.serializers=s1 s2 s3
a1.sources.source1.interceptors.i1.serializers.s1.name=one
a1.sources.source1.interceptors.i1.serializers.s2.name=two
a1.sources.source1.interceptors.i1.serializers.s3.name=three
a1.sources.source1.channels=channel1
a1.sinks.sink1.type=hdfs
a1.sinks.sink1.channel=channel1
a1.sinks.sink1.hdfs.path=hdfs://localhost:9000/flume/%{one}/%{three}
a1.sinks.sink1.hdfs.round=true
a1.sinks.sink1.hdfs.roundValue=10
a1.sinks.sink1.hdfs.roundUnit=minute
a1.sinks.sink1.hdfs.fileType=DataStream
a1.sinks.sink1.hdfs.writeFormat=Text
a1.sinks.sink1.hdfs.rollInterval=0
a1.sinks.sink1.hdfs.rollSize=10240
a1.sinks.sink1.hdfs.rollCount=0
a1.sinks.sink1.hdfs.idleTimeout=60
a1.channels.channel1.type=memory
a1.channels.channel1.capacity=10000
a1.channels.channel1.transactionCapacity=1000
a1.channels.channel1.keep-alive=30
4.最后ctrl+s进行保存测评即可。