模块出处
[link] [code] [MM 21] Complementary Trilateral Decoder for Fast and Accurate Salient Object Detection
模块名称
Spatial Attention Module (SAM)
模块作用
空间注意力
模块结构
模块代码
import torch
import torch.nn as nn
import torch.nn.functional as F
def conv3x3(in_planes, out_planes, stride=1, padding=1, dilation=1, bias=False):
"3x3 convolution with padding"
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=padding, dilation=dilation, bias=bias)
class SAM(nn.Module):
def __init__(self, in_chan, out_chan):
super(SAM, self).__init__()
self.conv_atten = conv3x3(2, 1)
self.conv = conv3x3(in_chan, out_chan)
self.bn = nn.BatchNorm2d(out_chan)
def forward(self, x):
avg_out = torch.mean(x, dim=1, keepdim=True)
max_out, _ = torch.max(x, dim=1, keepdim=True)
atten = torch.cat([avg_out, max_out], dim=1)
atten = torch.sigmoid(self.conv_atten(atten))
out = torch.mul(x, atten)
out = F.relu(self.bn(self.conv(out)), inplace=True)
return out
if __name__ == '__main__':
x = torch.randn([1, 256, 16, 16])
sam = SAM(in_chan=256, out_chan=64)
out = sam(x)
print(out.shape) # 1, 64, 16, 16
原文表述
我们设计了空间注意力模块 (SAM),以有效地完善特征(见图 3)。我们首先沿通道轴使用平均和最大运算,分别生成两个不同的单通道空间图 S a v g S_{avg} Savg和 S m a x S_{max} Smax。然后,我们将它们连接起来,通过3×3卷积和sigmoid函数计算出空间注意力图。空间注意力图 M s a M_{sa} Msa可以通过元素级相乘从空间维度对特征重新加权。最后,细化后的特征被送入3×3卷积层,将通道压缩至64。