【C++11】—— lambda表达式

news2024/11/22 21:25:41

目录

一、lambda表达式的简介

二、lambda表达式的基本语法

三、lambda表达式的使用方法

四、lambda表达式的底层原理


一、lambda表达式的简介

lambda表达式就类似于仿函数,相比仿函数要更加的简洁,我们看一下下面的代码:

//商品类
struct Goods
{
    string _name;  // 名字
    double _price; // 价格
    int _evaluate; // 评价
};

        在给定的商品类中,如果我们想要通过名字、价格和评价来给商品进行升序或降序。在没有lambda表达式的时候,通过仿函数就可以实现,代码如下:

//按价格的升序
struct ComparePriceLess
{
	bool operator()(const Goods& g1, const Goods& g2)
	{
		return g1._price < g2._price;
	}
};

//按价格降序
struct ComparePriceGreater
{
	bool operator()(const Goods& g1, const Goods& g2)
	{
		return g1._price > g2._price;
	}
};

int main()
{
	vector<Goods> v = { { "苹果", 2.1, 300 }, { "香蕉", 3.3, 100 }, { "橙子", 2.2, 1000 }, { "菠萝", 1.5, 1 } };
	sort(v.begin(), v.end(), ComparePriceLess());    //按价格升序排序
	sort(v.begin(), v.end(), ComparePriceGreater()); //按价格降序排序
	return 0;
}

        显然这样写是没有什么问题,但是,如果你写的仿函数在取名的时候不是很贴切,导致他人看你写的仿函数的时候,有可能看不懂,我们来看看lambda表达式写出来是什么样子的;

int main()
{
	vector<Goods> v = { { "苹果", 2.1, 300 }, { "香蕉", 3.3, 100 }, { "橙子", 2.2, 1000 }, { "菠萝", 1.5, 1 } };
	sort(v.begin(), v.end(), [](const Goods& g1, const Goods& g2)
	{
		return g1._price < g2._price; 
	}); //按价格升序排序

	sort(v.begin(), v.end(), [](const Goods& g1, const Goods& g2)
	{
		return g1._price > g2._price;
	}); //按价格降序排序

	return 0;
}

这样一来,每次调用sort函数时只需要传入一个lambda表达式指明比较方式即可,阅读代码的人一看到lambda表达式就知道本次排序的比较方式是怎样的,提高了代码的可读性。 

二、lambda表达式的基本语法

lambda表达式书写格式:[capture-list] (parameters) mutable -> return-type { statement
}
  • [capture-list] : 捕捉列表,该列表总是出现在lambda函数的开始位置,编译器根据[]来判断接下来的代码是否为lambda函数,捕捉列表能够捕捉上下文中的变量供lambda函数使用。
  • (parameters):参数列表。与普通函数的参数列表一致,如果不需要参数传递,则可以 连同()一起省略
  • mutable:默认情况下,lambda函数总是一个const函数,mutable可以取消其常量性。使用该修饰符时,参数列表不可省略(即使参数为空)。
  • ->returntype:返回值类型。用追踪返回类型形式声明函数的返回值类型,没有返回值时此部分可省略。返回值类型明确情况下,也可省略,由编译器对返回类型进行推导。
  • {statement}:函数体。在该函数体内,除了可以使用其参数外,还可以使用所有捕获 到的变量。

lambda函数的参数列表和返回值类型都是可选部分,但捕捉列表和函数体是不可省略的,因此最简单的lambda函数如下: 

int main()
{
    //最简单的lambda表达式,该lambda表达式没有任何意义
	[]{}; 

	return 0;
}

捕获列表说明:

  • var ]:表示值传递方式捕捉变量var
  • ]:表示值传递方式捕获所有父作用域中的变量(成员函数中包括this)
  • &var ]:表示引用传递捕捉变量var
  • ]:表示引用传递捕捉所有父作用域中的变量(成员函数中包括this)

注意:
  1. 父作用域指的是包含lambda函数的语句块
  2. 语法上捕捉列表可由多个捕捉项组成,并以逗号分割。比如:[=, &a, &b],以引用传递的方式捕捉变量a和b,值传递方式捕捉其他所有变量 ;[&,a, this]:值传递方式捕捉变量a和this,引用方式捕捉其他变量;
  3. 捕捉列表不允许变量重复传递,否则就会导致编译错误。 比如:[=, a]:=已经以值传递方式捕捉了所有变量,捕捉a重复
  4. 在块作用域以外的lambda函数捕捉列表必须为空。
  5. 在块作用域中的lambda函数仅能捕捉父作用域中局部变量,捕捉任何非此作用域或者非局部变量都会导致编译报错。
  6. lambda表达式之间不能相互赋值,即使看起来类型相同。

三、lambda表达式的使用方法

使用lambda表达式进行两数的交换

int main()
{
	int a = 10, b = 20;
    //这里的“->void”也是可以省略的
	auto Swap = [](int& x, int& y)->void{
		int tmp = x;
		x = y;
		y = tmp;
	};

	Swap(a, b); 

	return 0;
}

使用传值捕捉所有

int main()
{
	int a = 10, b = 20;
	//传值捕捉所有
	auto Swap = [=]()mutable {
		int tmp = a;
		a = b;
		b = tmp;
	};

	Swap();

	//传值捕捉a和b
	auto Swap2 = [a, b]()mutable {
		int tmp = a;
		a = b;
		b = tmp;
	};
	Swap2();

	return 0;
}

这里需要注意,在以传值捕捉的时候,因为lambda表达式总是一个const函数,mutable可以取消其常量性,此时的圆括号也不可以省略

以引用捕捉 

int main()
{
	int a = 10, b = 20;
	//以引用捕捉所有
	auto Swap = [&]{
		int tmp = a;
		a = b;
		b = tmp;
	};

	Swap();

	//以引用捕捉a和b
	auto Swap2 = [&a, &b]{
		int tmp = a;
		a = b;
		b = tmp;
	};
	Swap2();

	//以引用捕捉a、以传值捕捉b
	auto Swap3 = [&a, b]()mutable {
		int tmp = a;
		a = b;
		b = tmp;
	};
	Swap3();

	return 0;
}

lambda表达式之间不能相互赋值,即使看起来类型相同

void (*PF)();
int main()
{
	auto f1 = [] {cout << "hello world" << endl; };
	auto f2 = [] {cout << "hello world" << endl; };

	//f1 = f2;   // 编译失败--->提示找不到operator=()

	// 但允许使用一个lambda表达式拷贝构造一个新的副本
	auto f3(f2);
	f3();

	// 可以将lambda表达式赋值给相同类型的函数指针
	PF = f2;
	PF();

	return 0;
}

四、lambda表达式的底层原理

函数对象,又称为仿函数,即可以想函数一样使用的对象,就是在类中重载了operator()运算符的类对象。

class Rate
{
public:
	Rate(double rate) : _rate(rate)
	{}

	double operator()(double money, int year)
	{
		return money * _rate * year;
	}

private:
	double _rate;
};

int main()
{
	// 函数对象
	double rate = 0.49;
	Rate r1(rate);
	r1(10000, 2);

	// lamber
	auto r2 = [=](double monty, int year)->double {return monty * rate * year;};
	r2(10000, 2);

	return 0;
}
函数对象将rate作为其成员变量,在定义对象时给出初始值即可,lambda表达式通过捕获列表可以直接将该变量捕获到。

lambda表达式底层的处理方式和仿函数是一样的,在VS下,lambda表达式在底层会被处理为函数对象,该函数对象对应的类名叫做<lambda_uuid>。就算是两个相同的lambda表达式,它们的uuid也是不同的;

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/165387.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【项目实战】使用MybatisPlus乐观锁插件功能

一、背景 当要更新一条记录时&#xff0c;希望这条记录没有被别人更新&#xff0c;可以考虑使用MybatisPlus乐观锁插件功能来实现以上需求。 二、乐观锁介绍 2.1 乐观锁是什么&#xff1f; 乐观锁是一种乐观思想&#xff0c;即认为读多写少&#xff0c;遇到并发的可能性低&…

使用ASM框架创建ClassVisitor时遇到IllegalArgumentException的一种可能解决办法

背景 ASM是java语言中最为广泛使用的插装框架&#xff0c;其优点在于可以动态地在运行时改变java系统的行为&#xff0c;加入我们自己的逻辑。在软件测试领域应用广泛。但是其使用难度很高&#xff0c;一方面使用asm框架需要对java底层知识有较高的了解&#xff0c;另一方面网…

网页共享电脑屏幕与播放(带声音)

这次项目我们是写的一个课堂辅助软件的网页版&#xff0c;其中有一个功能感觉能作为我们项目的一个亮点&#xff0c;就是直播功能&#xff0c;在之前并没有写过这个东西。虽然现在这个功能还不知道怎么写&#xff0c;但是它的流程终归是利用视频流将本地的视频给共享出去&#…

Verilog:【8】基于FPGA实现SD NAND FLASH的SPI协议读写

碎碎念&#xff1a; 终于熬过了期末周&#xff0c;可以开始快乐的开发之旅了。 这一期作为一千粉后的首篇博客&#xff0c;由于之后项目会涉及到相关的部分&#xff0c;因此介绍的是使用FPGA实现SD NAND FLASH的读写操作&#xff0c;以雷龙科技提供的SD NAND FLASH样品为例&…

实证分析权重系数计算大全

在实际研究中&#xff0c;权重计算是一种常见的分析方法&#xff0c;需要结合数据的特征情况进行选择&#xff0c;比如数据之间的波动性是一种信息量&#xff0c;那么可考虑使用CRITIC权重法或信息量权重法&#xff1b;也或者专家打分数据&#xff0c;那么可使用AHP层次法或优序…

直观感受PromQL及其数据类型

由于PromQL内容较多&#xff0c;将内容分为三篇文章讲述&#xff1a; 一、直观感受PromQL及其数据类型 二、PromQL之选择器和运算符 三、PromQL之函数 想必都知道要使用Msql&#xff0c;必须会用SQL&#xff0c;同样要使用Prometheus 就要掌握PromQL&#xff08;Prometheus Que…

【链表】leetcode142.环形链表II(C/C++/Java/Js)

leetcode142.环形链表II1 题目2 思路2.1 判断链表是否有环--快慢指针法2.2 如果有环&#xff0c;如何找到这个环的入口2.3 补充3 代码3.1 C版本3.2 C版本3.3 Java版本3.4 JavaScript版本4 总结1 题目 题源链接 给定一个链表的头节点 head &#xff0c;返回链表开始入环的第一个…

软测复习05:基于质量特征的测试

作者&#xff1a;非妃是公主 专栏&#xff1a;《软件测试》 个性签&#xff1a;顺境不惰&#xff0c;逆境不馁&#xff0c;以心制境&#xff0c;万事可成。——曾国藩 文章目录性能测试压力测试容量测试健壮性测试安全性测试可靠性测试恢复性测试协议一致性测试兼容性测试安装…

【数据结构】保姆级单链表教程(概念、分类与实现)

目录 &#x1f34a;前言&#x1f34a;&#xff1a; &#x1f348;一、链表概述&#x1f348;&#xff1a; 1.链表的概念及结构&#xff1a; 2.链表存在的意义&#xff1a; &#x1f353;二、链表的分类&#x1f353;&#xff1a; &#x1f95d;三、单链表的实现&#x1f…

​盘点几款国内外安全稳定的域名解析平台​

众所周知&#xff0c;有了域名后想建站使用&#xff0c;必须要先解析域名。域名使用注册商一般会提供域名解析服务&#xff0c;这虽然为用户提供了方便&#xff0c;但功能大多有限&#xff0c;使用第三方域名解析平台就成了非常必要的选择。今天&#xff0c;小编就为大家盘点几…

计算机视觉OpenCv学习系列:第四部分、键盘+鼠标响应操作

第四部分、键盘鼠标响应操作第一节、键盘响应操作1.键盘响应事件2.键盘响应3.代码练习与测试第二节、鼠标操作与响应1.鼠标事件与回调2.鼠标操作3.代码练习与测试学习参考第一节、键盘响应操作 键盘响应中有一个函数叫做waitKey&#xff0c;所有的获取键盘键值都是通过waitKey…

【经典笔试题】动态内存管理

test1&#xff1a;void GetMemory(char* p) {p (char*)malloc(100); } void Test(void) {char* str NULL;GetMemory(str);strcpy(str, "hello world");printf(str); }int main() {Test();return 0; }请问执行上面代码&#xff0c;会出现什么结果&#xff1f;解析&a…

7. R语言【独立性检验】:卡方独立性检验、Fisher精确检验 、Cochran-Mantel-Haenszel检验

文章目录1. 卡方检验2. 费希尔精确检验&#xff08;Fisher Exact Test&#xff09;3. Cochran-Mantel-Haenszel检验独立性检验&#xff1a;用来判断变量之间相关性的方法&#xff0c;如果两个变量彼此独立&#xff0c;那么两者统计上就是不相关的 1. 卡方检验 可以使用chisq.…

Java面向对象之多态、内部类、常用API

目录面向对象之三大特性之三&#xff1a;多态多态的概述、多态的形式多态的好处多态下引用数据类型的类型转换多态的综合案例内部类内部类概述内部类之一&#xff1a;静态内部类内部类之二&#xff1a;成员内部类内部类之三&#xff1a;局部内部类内部类之四&#xff1a;匿名内…

JavaSE与网络面试题

大佬的&#xff1a; https://github.com/Snailclimb/JavaGuide https://osjobs.net/topk/all/ 自增自减 要点&#xff1a; 赋值 &#xff0c;最后计算 右边的从左到右加载值&#xff0c;一次压入操作数栈 实际先算哪个看运算符的优先级 自增、自减操作都是直接修改变量…

SpringCloud面试题

为什么需要学习Spring Cloud 不论是商业应用还是用户应用&#xff0c;在业务初期都很简单&#xff0c;我们通常会把它实现为单体结构的应用。但是&#xff0c;随着业务逐渐发展&#xff0c;产品思想会变得越来越复杂&#xff0c;单体结构的应用也会越来越复杂。这就会给应用带…

带你走入虚函数和多态的世界(c++)

1、什么是虚函数 C类中用virtual修饰的函数叫做虚函数&#xff0c;构造函数没有虚构造函数&#xff0c;存在虚析构函数&#xff0c;C所有虚函数都是一个指针去存储的&#xff0c;所以具有虚函数的类&#xff0c;内存会增加一个指针大小的内存 #include<iostream> #includ…

第一章:计算机网络概述

一、计算机网络基本概念 1、什么是计算机网路&#xff1f; 计算机网络是通信技术与计算机技术紧密结合的产物。计算机网络就是一种特殊的通信网络&#xff0c;其特别之处就是&#xff0c;其信源和信宿通常就是我们所说的计算机&#xff0c;发出的信息通常就是数字化的一些信息…

数据分析-深度学习 Pytorch Day5

李宏毅《机器学习》第6讲——梯度下降Review: 梯度下降法在回归问题的第三步中&#xff0c;需要解决下面的最优化问题&#xff1a;我们要找一组参数θ &#xff0c;让损失函数越小越好&#xff0c;这个问题可以用梯度下降法解决。假设θ有里面有两个参数θ1,θ2&#xff0c;随机…

FPGA 20个例程篇:19.OV7725摄像头实时采集送HDMI显示(一)

第七章 实战项目提升&#xff0c;完善简历 19.OV7725摄像头实时采集送HDMI显示&#xff08;一&#xff09; 在例程“OV7725摄像头实时采集送HDMI显示”中&#xff0c;我们将走近FPGA图像处理的世界&#xff0c;图像处理、数字信号、高速接口也一直被业界公认为FPGA应用的三大主…