文献速递:深度学习医学影像心脏疾病检测与诊断--基于深度学习的低剂量SPECT心肌灌注图像去噪:定量评估与临床表现

news2025/1/17 4:01:11

Title 

题目

Deep learning–based denoising of low‑dose SPECT myocardialperfusion images: quantitative assessment and clinical performance

基于深度学习的低剂量SPECT心肌灌注图像去噪:定量评估与临床表现

01

文献速递介绍

单光子发射计算机断层扫描(SPECT)是一种在各种临床领域广泛使用的分子成像技术,包括心血管疾病评估。SPECT心肌灌注成像(MPI)是一种有效的非侵入性方法,用于冠状动脉疾病的诊断、预测疾病进展以及评估急性冠状动脉综合征。为了在核医学中获得高质量图像,应注射足够剂量的放射性药物。超出规定限制的注射剂量将导致信噪比低和图像质量差,从而影响诊断性能。

由于SPECT被认为是医学成像模式中辐射剂量的第二大贡献者(每年在美国进行的约90%的应激成像研究),对该成像模式的辐射风险的关注日益增加。已经进行了多项研究,以应对核医学成像中减少放射性药物注射活性而不损害诊断/临床价值的挑战。提出的策略分为四类:统计迭代图像重建、后重建滤波或后处理、硬件的最新进展以及机器学习技术。

迭代图像重建算法将低剂量图像重建视为一个凸优化问题,并通过对信号形成和噪声进行统计建模来抑制噪声。先进的迭代图像重建算法已经表明,在SPECT-MPI成像中注射剂量或获取时间可以降低两倍或更高。在此方面,Ramon等人量化了SPECT-MPI图像中灌注缺损检测的准确性,作为注射剂量的函数以最小化给药剂量而不影响诊断性能。其他方法依赖于不同的后处理和/或后重建去噪技术,包括非局部均值(NLM)或双边滤波器来抑制低剂量图像中的噪声。最近,创新的碘化物探测器设计和SPECT相机以及新算法主要设计用于减少扫描时间或注射活性,同时保留基础信息和临床价值。装备有光电倍增管和平行孔屏蔽器的传统双头SPECT系统在分辨率和灵敏度上表现不佳,并且通常需要长时间的数据采集、高给药剂量等。专用心脏SPECT仪器在过去几年取得了巨大进步。新的商业化超快固态心脏相机(DSPECT和GE 530c/570c)能够进行低剂量的诊断质量成像。除了前述方法外,一定程度上能够恢复低剂量图像中的基础信号/结构的深度学习算法已经展示出了有前景的性能/潜力,直接从相应的低剂量图像中估计/预测高质量的标准剂量图像。

Abstract

摘要

This work was set out to investigate the feasibility of dose reduction in SPECT myocardial perfusion imaging (MPI) without sacrifcing diagnostic accuracy. A deep learning approach was proposed to synthesize full-dose images from the corresponding low-dose images at diferent dose reduction levels in the projection space.

本研究旨在探究在不损失诊断准确性的情况下,减少SPECT心肌灌注成像(MPI)的剂量是否可行。提出了一种深度学习方法,用于在投影空间中合成对应剂量水平下的低剂量图像的全剂量图像。

Method

方法

Clinical SPECT-MPI images of 345 patients acquired on a dedicated cardiac SPECT camera in list-mode format were retrospectively employed to predict standard-dose from low-dose images at half-, quarter-, and one-eighth-dose levels. To simulate realistic low-dose projections, 50%, 25%, and 12.5% of the events were randomly selected from the list-mode data through applying binomial subsampling. A generative adversarial network was implemented to predict non-gated standarddose SPECT images in the projection space at the diferent dose reduction levels. Well-established metrics, including peak signal-to-noise ratio (PSNR), root mean square error (RMSE), and structural similarity index metrics (SSIM) in addition to Pearson correlation coefcient analysis and clinical parameters derived from Cedars-Sinai software were used to quantitatively assess the predicted standard-dose images. For clinical evaluation, the quality of the predicted standard-dose images was evaluated by a nuclear medicine specialist using a seven-point (−3 to+3) grading scheme.

345名患者的临床SPECT-MPI图像,采用专用心脏SPECT摄像机以列表模式格式获取,被用于回顾性地从低剂量图像预测标准剂量图像,分别在一半、四分之一和八分之一的剂量水平上。为了模拟真实的低剂量投影,从列表模式数据中通过二项子采样随机选择了50%、25%和12.5%的事件。实现了一个生成对抗网络,用于在不同剂量水平上的投影空间中预测非门控标准剂量SPECT图像。使用成熟的指标,包括峰值信噪比(PSNR)、均方根误差(RMSE)和结构相似性指标(SSIM),以及皮尔逊相关系数分析和从Cedars-Sinai软件导出的临床参数,对预测的标准剂量图像进行定量评估。对于临床评估,核医学专家使用七点(-3到+3)评分方案评估了预测的标准剂量图像的质量。

Results

结果

The highest PSNR (42.49±2.37) and SSIM (0.99±0.01) and the lowest RMSE (1.99±0.63) were achieved at a half-dose level. Pearson correlation coefcients were 0.997±0.001, 0.994±0.003, and 0.987±0.004 for the predicted standard-dose images at half-, quarter-, and one-eighth-dose levels, respectively. Using the standard-dose images as reference, the Bland–Altman plots sketched for the Cedars-Sinai selected parameters exhibited remarkably less bias and variance in the predicted standard-dose images compared with the low-dose images at all reduced dose levels. Overall, considering the clinical assessment performed by a nuclear medicine specialist, 100%, 80%, and 11% of the predicted standard-dose images were clinically acceptable at half-, quarter-, and one-eighth-dose levels, respectively.

在一半剂量水平上获得了最高的PSNR(42.49±2.37)和SSIM(0.99±0.01),以及最低的RMSE(1.99±0.63)。对于在一半、四分之一和八分之一剂量水平上预测的标准剂量图像,皮尔逊相关系数分别为0.997±0.001、0.994±0.003和0.987±0.004。使用标准剂量图像作为参考,对于Cedars-Sinai选定的参数所绘制的Bland-Altman图表,与所有减少剂量水平下的低剂量图像相比,预测的标准剂量图像显示出显着更少的偏差和方差。总体而言,考虑到核医学专家的临床评估,在一半、四分之一和八分之一剂量水平上,预测的标准剂量图像分别有100%、80%和11%是临床可接受的。

Conclusion

结论

The noise was efectively suppressed by the proposed network, and the predicted standard-dose images were comparable to reference standard-dose images at half- and quarter-dose levels. However, recovery of the underlying signals/information in low-dose images beyond a quarter of the standard dose would not be feasible (due to very poor signal-to-noise ratio) which will adversely afect the clinical interpretation of the resulting images.

提出的网络有效地抑制了噪声,并且在一半和四分之一剂量水平上,预测的标准剂量图像与参考标准剂量图像相媲美。然而,在低于标准剂量四分之一的剂量水平上,恢复低剂量图像中的潜在信号/信息将是不可行的(由于信噪比非常低),这将不利于对结果图像的临床解释。

Figure

图片

Fig. 1 Architecture of the generator network in the GAN model

图1 GAN模型中生成器网络的架构

图片

Fig. 2 Architecture of the discriminator network in the GAN model. Conv2D, 2D convolutional layer; BN, batch normalization layer; Lrelu, Leaky ReLU activation function

图2 GAN模型中鉴别器网络的架构。Conv2D,2D卷积层;BN,批归一化层;Lrelu,泄漏线性整流激活函数

图片

Fig. 3 The predicted non-gated projections for a randomly selected patient from the test dataset at half-, quarter-, and one-eighth-dose levels compared to the reference standarddose and low-dose projections

图3 在测试数据集中随机选择的一个患者的预测非门控投影图像,与参考标准剂量和低剂量投影图像进行对比,分别在一半、四分之一和八分之一剂量水平上。

图片

Fig. 4 Reconstructed non-gated images for a patient with severerisks. a Short-axis view, b long vertical-axis view, and c horizontal long-axis view. In a, b, and c, the rows from top to bottom correspond to the standard-dose (SD), half-dose (HD), quarter-dose (QD), oneeighth-dose (OD), predicted half-dose (PHD), predicted quarter-dose (PQD), and predicted one-eighth-dose (POD), respectively

图4 对一位风险严重的患者进行的重建的非门控图像。a 短轴视图,b 长纵轴视图,以及 c 水平长轴视图。在 a、b 和 c 中,从上到下的行对应于标准剂量(SD)、一半剂量(HD)、四分之一剂量(QD)、八分之一剂量(OD)、预测的一半剂量(PHD)、预测的四分之一剂量(PQD)和预测的八分之一剂量(POD)。

图片

Fig. 5 Comparison of Pearson correlation coefcients obtained from the low-dose and predicted standard-dose reconstructed images at half-, quarter-, and one-eighth-dose levels

图5 在一半、四分之一和八分之一剂量水平上,低剂量和预测的标准剂量重建图像所获得的皮尔逊相关系数的比较。

图片

Fig. 6 Bland–Altman plots of SSS index for the low-dose and predicted standard-dose images at a half-dose, b quarter-dose level, and c one-eighth-dose levels compared with the reference standard-dose images. The blue and red dashed lines indicate the mean and 95% confdence interval of the SSS diferences in the low-dose and predicted standard-dose images, respectively. HD, half-dose; PHD, predicted half-dose; QD, quarter-dose; PQD, predicted quarter-dose; OD, one-eighthdose; POD, predicted oneeighth-dose

图6 在一半剂量、四分之一剂量和八分之一剂量水平上,低剂量和预测的标准剂量图像的SSS指数的Bland-Altman图。与参考标准剂量图像进行比较。蓝色和红色虚线表示低剂量图像和预测的标准剂量图像中SSS差异的均值和95%置信区间,分别。HD,一半剂量;PHD,预测的一半剂量;QD,四分之一剂量;PQD,预测的四分之一剂量;OD,八分之一剂量;POD,预测的八分之一剂量

图片

Fig. 7 Bland–Altman plots of TPD% index for the low-dose and predicted standard-dose images at a half-dose, b quarterdose, and c one-eighth-dose levels compared with the reference standard-dose images. The blue and red dashed lines designate the mean and 95% confdence interval of the TPD% diferences in the low-dose and predicted standard-dose images, respectively. HD, half-dose; PHD, predicted half-dose; QD, quarter-dose; PQD, predicted quarter-dose; OD, one-eighthdose; POD, predicted oneeighth-dose

图7 在一半剂量、四分之一剂量和八分之一剂量水平上,低剂量和预测的标准剂量图像的TPD%指数的Bland-Altman图。与参考标准剂量图像进行比较。蓝色和红色虚线表示低剂量图像和预测的标准剂量图像中TPD%差异的均值和95%置信区间,分别。HD,一半剂量;PHD,预测的一半剂量;QD,四分之一剂量;PQD,预测的四分之一剂量;OD,八分之一剂量;POD,预测的八分之一剂量

图片

Fig. 8 Results of image quality assessment (summed score diference) by the nuclear medicine specialist for the low-dose and predicted standard-dose images at the three reduced dose levels. Clinically acceptable cases are hatched. HD, half-dose, PHD, predicted half-dose, QD, quarter-dose, PQD, predicted quarter-dose, OD, one-eighth-dose, POD, predicted one-eighth-dose

图8 核医学专家对三个减少剂量水平下的低剂量和预测的标准剂量图像的图像质量评估结果(总和评分差异)。临床可接受的情况用斜线标记。HD,一半剂量;PHD,预测的一半剂量;QD,四分之一剂量;PQD,预测的四分之一剂量;OD,八分之一剂量;POD,预测的八分之一剂量

图片

Fig. 9 The predicted gated projections for a randomly selected patient from the test dataset at the half-dose level compared to the reference standard-dose and low-dose projections

图9 在一半剂量水平上,从测试数据集中随机选择的一个患者的预测门控投影图像,与参考标准剂量和低剂量投影图像进行对比

Table

图片

Table 1 Quantitative results associated with the diferent dose levels in the projection space. The p value between the low-dose and the predicted standard-dose projections at each reduced dose level is given

表1 在投影空间中不同剂量水平相关的定量结果。给出了每个减少剂量水平下低剂量和预测的标准剂量投影之间的p值。

图片

Table 2 Quantitative results associated with diferent dose levels in the image space. The p value between the low-dose and the predicted standard-dose projections at each reduced dose level is given

表2 在图像空间中与不同剂量水平相关的定量结果。给出了每个减少剂量水平下低剂量和预测的标准剂量投影之间的p值。

图片

Table 3 Pearson correlation coefcients of the QPS quantitative parameters considering the actual standarddose images as reference

表3 考虑实际标准剂量图像作为参考的QPS定量参数的皮尔逊相关系数

图片

Table 4 Pearson correlation coefcients for SS values assigned by the nuclear medicine specialist. The p value between the low-dose and the predicted standard-dose projections at each reduced dose level are given

表4 核医学专家分配的SS值的皮尔逊相关系数。给出了每个减少剂量水平下低剂量和预测的标准剂量投影之间的p值。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1653599.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Options API:选项式 API改成Composition API:组合式 API的留言板

让我欢喜让我忧 改成Composition API:组合式 API的代码&#xff0c; <template><!-- start --><span class"span_checkbox">操作<input type"checkbox" v-model"showInput" value"操作" /></span><…

Learning Continuous Image Representation with Local Implicit Image Function

CVPR2021https://github.com/yinboc/liif 问题引入 图像普遍都是使用像素来表示的&#xff0c;而现实世界是连续的&#xff0c;所以本文借鉴3D中neural implicit representation的思想&#xff0c;以连续的方式表示图像&#xff1b;模型输入坐标值和坐标附近的特征&#xff0…

区块链 | NFT 水印:Review on Watermarking Techniques(二)

&#x1f34d;原文&#xff1a;Review on Watermarking Techniques Aiming Authentication of Digital Image Artistic Works Minted as NFTs into Blockchains 1 半脆弱和可逆水印 鲁棒性好的水印技术通常会产生非常低透明度。正如前面所述&#xff0c;由于透明度在处理数字…

OpenGL 入门(四)—— 贴纸与美颜滤镜

本篇我们来介绍贴纸效果与美颜滤镜的实现。 1、贴纸效果 贴纸实际上是一个图片&#xff0c;用 Bitmap 加载图片后用 OpenGL 渲染到指定的位置上。我们举例添加一个耳朵贴纸&#xff1a; 1.1 获取人脸位置 上一篇我们在讲大眼滤镜时&#xff0c;在 Native 层除了获取到人脸 5…

【数据库表的约束(下)】

文章目录 一、自增长主键二、唯一键约束三、外键约束总结 一、自增长主键 这个约束的功能是&#xff1a; 你不用管我&#xff0c;也不需要插入我这一列的数据&#xff0c;我会保证自己与其他数据不冲突&#xff0c;并且是连续的。 创建一个表&#xff0c;表格内容如下&#x…

Tkinter组件:Checkbutton

Tkinter组件&#xff1a;Checkbutton Checkbutton&#xff08;多选按钮&#xff09;组件用于实现确定是否选择的按钮。Checkbutton 组件可以包含文本或图像&#xff0c;你可以将一个 Python 的函数或方法与之相关联&#xff0c;当按钮被按下时&#xff0c;对应的函数或方法将被…

保护公司机密:避免员工带着数据说拜拜

公司的核心资产之一就是数据。无论是客户信息、研发代码、内部决议、财务报告、商业合同、设计图纸等都是公司的重要资产。如果这些数据在员工离职时被带走&#xff0c;或在员工在职期间不当行为导致数据泄露&#xff0c;将给公司带来重大损失。 然而&#xff0c;保护这些数据…

大模型微调之 在亚马逊AWS上实战LlaMA案例(四)

大模型微调之 在亚马逊AWS上实战LlaMA案例&#xff08;四&#xff09; 在 Amazon SageMaker JumpStart 上微调 Llama 2 以生成文本 Meta 能够使用Amazon SageMaker JumpStart微调 Llama 2 模型。 Llama 2 系列大型语言模型 (LLM) 是预先训练和微调的生成文本模型的集合&#x…

漏洞伴随App无时不在,该怎么办?

漏洞攻击、加密被破坏以及数据泄露是App面临的三大重要安全风险&#xff0c;无论开发者如何防范&#xff0c;攻击者往往会找到新的方法&#xff0c;并依靠最新的工具来破坏App安全性。 统计数据表明&#xff0c;大约82&#xff05;的漏洞是在App程序代码中发现的。如果尽快发现…

百度百科怎么修改词条

百度百科是一个由网民编辑内容的网络百科全书&#xff0c;支持用户添加或修改词条。以下是关于如何修改百度百科词条的详细步骤和注意事项。 1. 登录百度百科账户 首先&#xff0c;你需要登录到百度百科账户。如果你还没有百度账号&#xff0c;你需要先注册一个。注册完成后&a…

【vue+el-upload】当action=“#“,代表不使用默认上传,使用自定义上传,http-request获取文件流

el-upload有多种上传行为&#xff1a; 1、立即上传&#xff1a; 当 action 属性被赋予一个有效的 URL 时&#xff0c;一旦用户选择了文件&#xff0c;el-upload 组件会立即自动将文件上传到指定的服务器地址。 2、不立即上传&#xff08;自定义触发&#xff09;&#xff1a; 如…

2024-5-3学习笔记 虚拟继承原理

目录 原理 总结 前面提到过&#xff0c;解决菱形继承产生的数据二义性问题和数据冗余&#xff0c;就需要用到虚拟继承&#xff0c;关于它是如何解决的&#xff0c;我们来一起研究。 class Person { public :string _name ; // 姓名 }; class Student : virtual public Perso…

微软exchange邮箱发送

使用java发送exchange类型的邮件&#xff0c;foxmail中配置如下图&#xff1a; 需要的maven依赖如下&#xff1a; <dependency><groupId>com.microsoft.ews-java-api</groupId><artifactId>ews-java-api</artifactId><version>2.0</ve…

以gitee为例的git入门使用指北

安装git 在linux中我们首先需要使用 sudo apt install git来下载git 在windows中可以下载msysGit 链接&#xff1a;https://git-scm.com/download/win gitee准备 申请账号 建立仓库 ​ 点击新建仓库 这里一般是私有库&#xff0c;点击创建&#xff0c;这时你就拥有一个线上…

LearnOpenGL(九)之材质

一、材质 在现实世界里&#xff0c;每个物体会对光产生不同的反应。比如&#xff0c;钢制物体看起来通常会比陶土花瓶更闪闪发光&#xff0c;一个木头箱子也不会与一个钢制箱子反射同样程度的光。在opengl中&#xff0c;我们可以针对每种表面定义不同的材质(Material)属性来模…

Web自动化测试入门:前端页面的组成分析详解!

在进行Web自动化测试时&#xff0c;了解前端页面的组成是非常重要的&#xff0c;因为页面的不同元素和交互会直接影响测试的实施和结果。本文将从0到1详细规范地介绍前端页面的组成。 1. 页面结构 一个典型的前端页面通常由HTML、CSS和JavaScript三部分组成。HTML负责页面的整…

STL速查

容器 (Containers) 图解容器 支持随机访问 stringarrayvectordeque支持支持支持支持 string 类 构造函数 string(); ------创建一个空的字符串 例如: string str;string(const char* s); ------使用字符串s初始化string(const string& str); ------拷贝构造 赋值操作…

Spring中FactoryBean的作用和实现原理

Spring中FactoryBean的作用和实现原理 BeanFactory与FactoryBean&#xff0c;相信很多刚翻看Spring源码的同学跟我一样很好奇这俩货怎么长得这么像&#xff0c;分别都是干啥用的。 BeanFactory是Spring中Bean工厂的顶层接口&#xff0c;也是我们常说的SpringIOC容器&#xff…

pip install flash_attn 报错

目录 报错截图关键问题nvcc -V 查看 cuda 版本查看 usr/local/cuda-* 安装的cuda版本设置 cuda-12.0 &#xff08;添加入环境变量&#xff09;FlashAttention 安装成功 报错截图 ImportError: This modeling file requires the following packages that were not found in you…

OSPF Stub区域

原理概述 OSPF 协议定义了多种区域&#xff08; Area &#xff09;类型&#xff0c;其中比较常见的有 Stub 区域和 Totally Stub 区域。区域的类型决定了在这个区域当中所存在的 LSA 的类型。 Stub 区域不允许 Type-4和 Type-5 LSA 进入&#xff0c;该区域会通过 Type-3 LSA…