车牌号识别系统:PyQT5+QT Designe+crnn/PaddleOCR+YOLO+OpenCV矫正算法。

news2024/11/24 10:53:07

PyQT5&QT Designe+crnn/PaddleOCR+YOLO+传统OpenCV矫正算法。可视化的车牌识别系统项目。

车牌号识别系统

  • 项目绪论
    • 1.项目展示
    • 2.视频展示
    • 3.整体思路
  • 一、PyQT5 和 QT Designer
    • 1.简介
    • 2.安装
    • 3.使用
  • 二、YOLO检测算法
  • 三、OpenCV矫正算法
  • 四、crnn/PaddleOCR字符识别算法
  • 五、QT界面中对得到的检测结果进行展示
  • 六、源码获取
  • 附录
    • 1.安装包国内镜像

项目绪论

1.项目展示

要实现的效果如下图所示
在这里插入图片描述

2.视频展示

视频展示链接(展示的另一个瓶盖生产日期检测项目):https://www.bilibili.com/video/BV1K1421673E/

3.整体思路

还是先给出整体思路
1.第一步需要用QT把界面呈现出来
2.第二步用YOLO把车牌位置检测出来
3.第三步,由于第二步检测出来的车牌不一定是正的,所以采用简单的传统OpenCV算法把歪的车牌矫正一下
4.第四步,使用字符识别算法如PaddleOCR或crnn等对矫正后的车牌图像进行字符识别
5.第五步,在QT界面上把识别出的内容展示出来

一、PyQT5 和 QT Designer

1.简介

PyQt5是Python编程语言的一个GUI(图形用户界面)工具包,它允许开发人员使用Python语言创建桌面应用程序。PyQt提供了许多用于创建丰富多样的用户界面的类和功能,以及用于处理用户输入和交互的工具。

而Qt Designer是PyQt程序UI界面的实现工具,使用Qt Designer可以拖拽、点击完成GUI界面设计,并且设计完成的.ui程序可以转换成.py文件供python程序调用。

因此结合PyQT5和QT Designer,可以采用直接拖拽和写代码二者结合的方式,快速实现界面的设计。

2.安装

在PyCharm里面安装PyQt5和QT工具包(如果报错可以切别的镜像源,更多镜像源在附录第一节),其中PyQT5-tools中就包括QT Designer

pip install PyQt5 -i https://pypi.douban.com/simple
pip install PyQt5-tools -i https://pypi.douban.com/simple

3.使用

下载完成之后,在虚拟环境的文件夹下,找到
\Lib\site-packages\qt5_applications\Qt\bin,点击designer.exe,即可直接进入QT Designer设计界面。
在这里插入图片描述
在此界面中,选择默认的Widget,然后直接创建即可
在这里插入图片描述
左侧栏可以选择一些插件,其中最常用的插件如下:

QLabel可以显示图像、文本等等(可以放文字)
QPushButton是按钮,用于响应事件

通过上述插件,我们已经通过可视化界面设计出一个简易的可视化界面了。
在这里插入图片描述

ctrl+s保存直接生成一份.ui为后缀的文件(文件默认名称为untitled.ui),
然后再使用如下指令:

pyuic5 -o untitled.py untitled.ui 

将untitled.ui变为可以通过编译器执行的untitled.py。

生成的文件中,基础结构如下:

class Ui_Form(object):
    def setupUi(self, Form):
        Form.setObjectName("Form")
        Form.resize(666, 560)
        ......
        # 定义的几个按钮
        self.pushButton = QtWidgets.QPushButton(Form)
        self.pushButton.setGeometry(QtCore.QRect(450, 480, 81, 31))
        self.pushButton.setStyleSheet("border:1px solid black")
        self.pushButton.setObjectName("pushButton")
        ......
        # 对应的按钮响应方法
        # 导入文件
        self.pushButton.clicked.connect(self.browse_image)
        # 开始预测
        self.pushButton_2.clicked.connect(self.predict_image)

随后我们在setupUi即定义各种组件的相应方法,如上代码的最后两行。
其中pushButton_2为代码中定义的按钮,predict_image为下方我们自己定义的相应方法。即:现在已经把predict_imagepushButton_2进行链接了,点击pushButton_2对应的按钮,响应predict_image方法

二、YOLO检测算法

在这里插入图片描述
使用标注过的数据集对车牌区域进行识别,识别效果如下图所示
在这里插入图片描述
YOLO算法本身也属于老生常谈的技术了,因此不在这里过多赘述,有疑问的同学可以翻一下博主之前的博客。

三、OpenCV矫正算法

识别出来的车牌可能非正,如下图所示,这样会给后续的字符识别工作带来困难
在这里插入图片描述
因此我们使用OpenCV的矫正算法,对其进行校正
在这里插入图片描述
我们这里使用透视矫正:在图像中存在透视变换时,矫正算法可以将图像中的对象转换为在一个平面上的投影,以消除透视效应,从而更容易进行后续的分析和处理。透视矫正通常用于计算机视觉、机器人导航、虚拟现实等领域。
矫正的具体代码如下所示

import cv2
import numpy as np

# 读取图像
imgPath = "D:\PythonCode\pyQT\warpMethods\data\\2.png"
image = cv2.imread(imgPath)
cv2.imshow('dilated Box', image)
cv2.waitKey(0)
# 将图像转换为灰度图像
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
cv2.imshow('dilated Box', gray)
cv2.waitKey(0)
# 二值化处理
_, binary = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)

# 膨胀操作,用于连接相邻的文字
kernel = np.ones((5,5), np.uint8)
dilated = cv2.dilate(binary, kernel, iterations=3)
cv2.imshow('dilated Box', dilated)
cv2.waitKey(0)
# 腐蚀操作,用于消除细小的噪声
eroded = cv2.erode(dilated, kernel, iterations=3)
cv2.imshow('eroded Box', eroded)
cv2.waitKey(0)
# 查找轮廓
contours, hierarchy = cv2.findContours(eroded, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

# 获取所有文本区域的最小外接矩形
boxes = []
for contour in contours:
    rect = cv2.minAreaRect(contour)
    box = cv2.boxPoints(rect)
    box = np.int0(box)
    boxes.append(box)

# 将所有文本区域的矩形框合并为一个大矩形框
merged_box = cv2.minAreaRect(np.concatenate(boxes))

# 提取矩形框的角点
rect_points = cv2.boxPoints(merged_box)

# 将角点转换为整数类型
rect_points = np.int0(rect_points)
print(rect_points)
# 在图像上绘制合并后的矩形框
cv2.drawContours(image, [rect_points], 0, (0, 255, 0), 2)

# 显示结果
cv2.imshow('Merged Box', image)
cv2.waitKey(0)
cv2.destroyAllWindows()
# 提取矩形框的角点并转换为浮点数类型的 NumPy 数组
src_pts = cv2.boxPoints(merged_box)
src_pts = np.float32(src_pts)

# 定义目标点
dst_pts = np.float32([[0, merged_box[1][1]-1],
                      [0, 0],
                      [merged_box[1][0]-1, 0],
                      [merged_box[1][0]-1, merged_box[1][1]-1]])

# 获取透视变换矩阵
M = cv2.getPerspectiveTransform(src_pts, dst_pts)

# 执行透视变换,校正文本区域
corrected_image = cv2.warpPerspective(image, M, (int(merged_box[1][0]), int(merged_box[1][1])))

# 检查纵向长度是否比横向长度长,如果是则翻转图像
if corrected_image.shape[0] > corrected_image.shape[1]:
    corrected_image = cv2.rotate(corrected_image, cv2.ROTATE_90_CLOCKWISE)

# 显示结果
cv2.imshow('Corrected Image', corrected_image)
cv2.waitKey(0)
cv2.destroyAllWindows()

四、crnn/PaddleOCR字符识别算法

文本识别是图像领域的一个常见任务,场景文字识别OCR任务中,需要先检测出图像中文字位置,再对检测出的文字进行识别,文节介绍的CRNN模型可用于后者, 对检测出的文字进行识别。
在这里插入图片描述
crnn存在不足的地方是它只能预测一行数据,因此多行数据不能进行预测,我们这里的车牌仅一行,但是如果有同学是识别多行的任务,则需要写个脚本对图像的进行分离,具体代码如下所示:

  # 将图像分成上下两段
    height = img.shape[0]
    half_height = height // 2
    upper_img = img[:half_height, :]
    lower_img = img[half_height:, :]

    # 对上半部分进行预测
    upper_img = Image.fromarray(upper_img)
    upper_image = upper_img.convert('L')
    upper_image = transformer(upper_image)
    if torch.cuda.is_available():
        upper_image = upper_image.cuda()
    upper_image = upper_image.view(1, *upper_image.size())
    upper_image = Variable(upper_image)

    model.eval()
    upper_preds = model(upper_image)

    _, upper_preds = upper_preds.max(2)
    upper_preds = upper_preds.transpose(1, 0).contiguous().view(-1)

    upper_preds_size = Variable(torch.IntTensor([upper_preds.size(0)]))
    upper_raw_pred = converter.decode(upper_preds.data, upper_preds_size.data, raw=True)
    upper_sim_pred = converter.decode(upper_preds.data, upper_preds_size.data, raw=False)
    print('Upper prediction: %-20s => %-20s' % (upper_raw_pred, upper_sim_pred))

    # 对下半部分进行预测
    lower_img = Image.fromarray(lower_img)
    lower_image = lower_img.convert('L')
    lower_image = transformer(lower_image)
    if torch.cuda.is_available():
        lower_image = lower_image.cuda()
    lower_image = lower_image.view(1, *lower_image.size())
    lower_image = Variable(lower_image)

    lower_preds = model(lower_image)

    _, lower_preds = lower_preds.max(2)
    lower_preds = lower_preds.transpose(1, 0).contiguous().view(-1)

    lower_preds_size = Variable(torch.IntTensor([lower_preds.size(0)]))
    lower_raw_pred = converter.decode(lower_preds.data, lower_preds_size.data, raw=True)
    lower_sim_pred = converter.decode(lower_preds.data, lower_preds_size.data, raw=False)
    print('Lower prediction: %-20s => %-20s' % (lower_raw_pred, lower_sim_pred))
    words = upper_sim_pred + "\n" + lower_sim_pred

如果只是为了方便我们也可以使用paddleocr提供的远端服务方式进行访问。这样精度更高且不用配置环境,博主试了一下精度特别高,基本能满足简易条件下的数据。

访问方法如下所示:

import base64
import json
import urllib
import requests


def main():
    url = "https://aip.baidubce.com/rest/2.0/ocr/v1/general_basic?access_token

    # image 可以通过 get_file_content_as_base64("C:\fakepath\1.bmp",True) 方法获取
    payload = '&detect_language=false&paragraph=false&probability=false'
    headers = {
        'Content-Type': 'application/x-www-form-urlencoded',
        'Accept': 'application/json'
    }

    response = requests.request("POST", url, headers=headers, data=payload)
    result_str = response.text

    # 解析 JSON 字符串
    data = json.loads(result_str)

    # 提取出 words 后的两个字符串
    if "words_result" in data:
        words_result = data["words_result"]
        if len(words_result) >= 2:
            word1 = words_result[0]["words"]
            word2 = words_result[1]["words"]
            print("提取结果:", word1, word2)
        else:
            print("Error: 'words_result' 中的元素数量不足 2")
    else:
        print("Error: 没有找到 'words_result' 键")
    result_str = word1+'\n' + word2
    print(result_str)


def get_file_content_as_base64(path, urlencoded=False):
    """
    获取文件base64编码
    :param path: 文件路径
    :param urlencoded: 是否对结果进行urlencoded
    :return: base64编码信息
    """
    with open(path, "rb") as f:
        content = base64.b64encode(f.read()).decode("utf8")
        if urlencoded:
            content = urllib.parse.quote_plus(content)
    return content


if __name__ == '__main__':
    main()

其中token需要替换成自己的(需要的同学多的话可以专门出一期PaddleOCR部署的博文)

五、QT界面中对得到的检测结果进行展示

具体逻辑为:

  1. 点击图片预测后,把图像路径传给predict_image( self.file_path定义为公共,因此可以直接访问)
  2. 使用YOLOv5Detect 中的predict方法,使用该文件路径,对其进行一系列的预测(具体方法如上文所示),即,先用yolo检测、再用opencv进行校正、最后使用paddleocr进行字符识别
  3. 拿到返回的数据,使用setPixmap显示到QT界面上。
from YOLOv5Detect import predict

  def predict_image(self):
        try:
            if self.file_path:
                # 这里执行图像预测的逻辑,例如调用预测模型
                print("预测图片路径:", self.file_path)
                # 在这里使用 self.file_path 进行图像预测
                predImg,cropped_image,warpImg,words = predict(self.file_path)  # 假设 predict 函数返回处理后的图像数组

                if predImg is not None and isinstance(predImg, np.ndarray):
                    pixmap = self.convert_array_to_pixmap(predImg)
                    self.output_img.setPixmap(pixmap.scaled(self.output_img.size(), Qt.KeepAspectRatio))

                if cropped_image is not None and isinstance(cropped_image, np.ndarray):
                    pixmap = self.convert_array_to_pixmap(cropped_image)
                    self.yucekuang_img.setPixmap(pixmap.scaled(self.yucekuang_img.size(), Qt.KeepAspectRatio))
                if warpImg is not None and isinstance(warpImg, np.ndarray):
                    pixmap = self.convert_array_to_pixmap(warpImg)
                    self.jiaozhenghou_img.setPixmap(pixmap.scaled(self.yucekuang_img.size(), Qt.KeepAspectRatio))
                if words:
                    self.shibiejieguo_kuang.setText(words)
                else:
                    print("预测函数返回无效的图像数组")
            else:
                print("请先选择图片")
        except Exception as e:
            print("预测图像时发生异常:", str(e))

六、源码获取

为了方便大家文档及论文撰写,博主更新了一篇五千字的技术细节文档,有需要可以联系.

<1831255794---q>制备数据集和写算法耗费了大量时间精力,因此收取点小费希望理解!!!
可接项目,大作业,毕设等 
价格略贵,技术够硬,认真负责,保证质量

在这里插入图片描述

附录

1.安装包国内镜像

清华大学镜像源:
https://pypi.tuna.tsinghua.edu.cn/simple/

阿里云镜像源:
http://mirrors.aliyun.com/pypi/simple/

中国科技大学镜像源:
https://pypi.mirrors.ustc.edu.cn/simple/

华中科技大学镜像源:
http://pypi.hustunique.com/simple/

上海交通大学镜像源:
https://mirror.sjtu.edu.cn/pypi/web/simple/

豆瓣镜像源:
http://pypi.douban.com/simple/

山东理工大学镜像源:
http://pypi.sdutlinux.org/

百度镜像源:
https://mirror.baidu.com/pypi/simple

使用方法:
pip install <安装包> -i <镜像源>

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1647445.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Linux权限控制进阶:ACL、su与sudo的完美结合

&#x1f407;明明跟你说过&#xff1a;个人主页 &#x1f3c5;个人专栏&#xff1a;《Linux &#xff1a;从菜鸟到飞鸟的逆袭》&#x1f3c5; &#x1f516;行路有良友&#xff0c;便是天堂&#x1f516; 目录 一、前言 1、Linux的起源与发展 2、什么是ACL 3、什么是用…

C语言 | Leetcode C语言题解之第74题搜索二维矩阵

题目&#xff1a; 题解&#xff1a; bool searchMatrix(int** matrix, int matrixSize, int* matrixColSize, int target) {int m matrixSize, n matrixColSize[0];int low 0, high m * n - 1;while (low < high) {int mid (high - low) / 2 low;int x matrix[mid /…

6个月小猫成长必备!福派斯无麸质幼猫粮评测

你知道吗&#xff1f;给小猫选择适合的猫粮是一件非常不容易但很重要的事情。那么&#xff0c;对于6个月大的小猫来说&#xff0c;什么样的猫粮是最适合它们的呢&#xff1f;&#x1f431; 我们首先要考虑的是猫粮的营养成分。6个月大的小猫正处于快速生长期&#xff0c;所以需…

厂家自定义 Android Ant编译流程源码分析

0、Ant安装 Windows下安装Ant&#xff1a; ant 官网可下载 http://ant.apache.org ant 环境配置&#xff1a; 解压ant的包到本地目录。 在环境变量中设置ANT_HOME&#xff0c;值为你的安装目录。 把ANT_HOME/bin加到你系统环境的path。 Ubuntu下安装Ant&#xff1a; sudo apt…

密码学《图解密码技术》 记录学习 第十五章

目录 十五章 15.1本章学习的内容 15.2 密码技术小结 15.2.1 密码学家的工具箱 15.2.2 密码与认证 15.2.3 密码技术的框架化 15.2.4 密码技术与压缩技术 15.3 虚拟货币——比特币 15.3.1 什么是比特币 15.3.2 P2P 网络 15.3.3地址 15.3.4 钱包 15.3.5 区块链 15.3.…

Redis 的数据库管理

Redis 提供了⼏个⾯向 Redis 数据库的操作&#xff0c;分别是 dbsize、select、flushdb、flushall 命令&#xff0c; 我将介绍这些常见的命令。 切换数据库 select dbIndex许多关系型数据库&#xff0c;例如 MySQL ⽀持在⼀个实例下有多个数据库存在的&#xff0c;MySQL 可以…

opencv图像处理详细讲(二)

联通组件分析 联通组件定义&#xff1a;像素值相同&#xff0c;通过四邻域或者八邻域相互连通的像素块。 换句话说&#xff0c;就是使用四邻域或八邻域的连通性&#xff0c;遍历图像的像素&#xff0c;并确定像素值相同并且连通的像素块&#xff0c;将它们标记为一个联通组件 两…

大数据面试题(十):Hive的高频面试考点(二)

文章目录 Hive的高频面试考点 一、请说明Hive中 sort by ,order by ,cluster by ,distribute by各代表什么意思

dockerk8s常用知识点

1、什么是docker 容器化和虚拟化对比 ▪开源的应用容器引擎&#xff0c;基于 Go 语言开发 ▪容器是完全使用沙箱机制,容器开销极低 ▪Docker就是容器化技术的代名词 ▪Docker也具备一定虚拟化职能 docker三大核心&#xff1a; Docker Engine: 提供了一个可以用来运行和管…

C++证道之路第十八章探讨C++新标准

一、复习前面介绍过的C11新功能 1、新类型 C11新增了类型long long 和unsigned long long 新增了类型char16_t 和char32_t 2、统一的初始化 C11扩大了用大括号括起的列表&#xff08;初始化列表&#xff09;的使用范围&#xff0c;使其可以用于所有内置类型和用户定义的类…

大数据Spark教程从入门到精通第三篇:Spark核心模块

一&#xff1a;Spark核心模块 1&#xff1a;概述 Spark最底层的模块是Apache Spark Core&#xff0c;其他的功能都是基于此实现的。 Spark SQL操作结构化数据的模块 Spark Streaming 对流式数据处理的模块。 Spark MLlib对机器学习支持的一个功能模块。学习难度很高 Spark Gra…

dumpsys meminfo 流程中细节

源码基于&#xff1a;Android U 参考&#xff1a; dumpsys meminfo 详解(R) dumpsys meminfo 详解(U) 1. 命令入口 MemBinder frameworks/base/services/core/java/com/android/server/am/AMS.javastatic class MemBinder extends Binder {ActivityManagerService mActivity…

Python-VBA函数之旅-print函数

目录 一、print函数的常见应用场景 二、print函数使用注意事项 三、如何用好print函数&#xff1f; 1、print函数&#xff1a; 1-1、Python&#xff1a; 1-2、VBA&#xff1a; 2、推荐阅读&#xff1a; 个人主页&#xff1a;神奇夜光杯-CSDN博客 一、print函数的常见应…

Prometheus 2: 一个专门评估其他语言模型的开源语言模型(续集)

普罗米修斯的续集来了。 专有的语言模型如 GPT-4 经常被用来评估来自各种语言模型的回应品质。然而,透明度、可控制性和可负担性等考虑强烈促使开发专门用于评估的开源语言模型。另一方面,现有的开源评估语言模型表现出关键的缺点:1) 它们给出的分数与人类给出的分数存在显著差…

Unity射击游戏开发教程:(11)制造敌人爆炸

增加爆炸效果 爆炸一切都变得更好!尤其是当你消灭敌人时。在这篇文章中,我将讨论如何在敌人被击中时为其添加爆炸动画。 在敌人的预制件中,您将需要创建一个新的动画。查看控制动画的动画器,默认情况下将从进入动画到敌人爆炸动画。这意味着,一旦敌人被实例化,敌人爆炸…

02、Kafaka 简介

02、Kafka 简介 1、 Kafka 简介 Apache Kafka 是一个分布式的发布-订阅消息系统&#xff0c;最初由 LinkedIn 公司开发&#xff0c;并在 2010 年贡献给了 Apache 软件基金会&#xff0c;成为一个顶级开源项目。Kafka 设计之初是为了满足高吞吐量、可扩展性、持久性、容错性以…

深度学习中的不确定性量化:技术、应用和挑战综述(一)

不确定性量化(UQ)在减少优化和决策过程中的不确定性方面起着关键作用&#xff0c;应用于解决各种现实世界的科学和工程应用。贝叶斯近似和集成学习技术是文献中使用最广泛的两种UQ方法。在这方面&#xff0c;研究人员提出了不同的UQ方法&#xff0c;并测试了它们在各种应用中的…

10.Java对象内置结构

文章目录 Java对象内置结构1.Java对象的三个部分1.1.对象头1.2.对象体1.3.对齐字节 2.对象结构中核心字段的作用2.1.MarkWord(标记字)2.2.Class Pointer(类对象指针)2.3.Array Length(数组长度)2.4.对象体2.5.对齐字节 3.Mark Word的结构信息3.1.不同锁状态下的Mark Word字段结…

GraphGPT——图结构数据的新语言模型

在人工智能的浪潮中&#xff0c;图神经网络&#xff08;GNNs&#xff09;已经成为理解和分析图结构数据的强大工具。然而&#xff0c;GNNs在面对未标记数据时&#xff0c;其泛化能力往往受限。为了突破这一局限&#xff0c;研究者们提出了GraphGPT&#xff0c;这是一种为大语言…

部署YUM仓库以及NFS共享服务

YUM仓库部署 一.YUM概述 YUM仓库源是一种软件包管理工具&#xff0c;用于在Linux系统上安装、更新和删除软件包。YUM仓库源包含了软件包的元数据信息和实际的软件包文件。用户可以通过配置YUM仓库源&#xff0c;从中下载和安装软件包。 常见的YUM仓库源包括&#xff1a; 本…