摘要
HCF-Net是一种用于红外小物体检测的深度学习网络。它主要包括三个模块:并行化斑块感知注意力(PPA)模块、维度感知选择性整合(DASI)模块和多稀释通道细化器(MDCR)模块。
PPA模块采用多分支特征提取策略,用于捕捉不同尺度和层次的特征信息。DASI模块可实现自适应信道选择和融合,提高模型的检测性能。MDCR模块则通过多个深度分离卷积层捕捉不同感受野范围的空间特征,进一步增强了模型的特征表示能力。
在SIRST红外单帧图像数据集上的实验结果表明,HCF-Net的性能良好,超过了其他传统模型和深度学习模型。
本文改进原有的PPA模块,使得得分进一步的提高,实现涨点!改进后的结构图:
论文:《HCF-Net:用于红外小目标检测的分层上下文融合网络》
红外小目标检测是一项重要的计算机视觉任务,涉及在红外图像中识别和定位微小物体,这些物体通常仅包含几个像素。然而,由于物体尺寸极小以及红外图像中通常复杂的背景,这项任务面临困难。在本文中,我们提出了一种深度学习方法 HCF-Net,通过多个实用模块显著提高了红外小目标检测的性能。具体来说,它包括并行补丁感知注意力(PPA)模块、维度感知选择性集成(DASI)模块和多空洞通道细化器(MDCR)模块。PPA 模块使用多分支特征提取策略来捕获不同尺度和级别的特征信