【6D位姿估计】数据集汇总 BOP

news2024/11/23 16:55:48

前言

BOP是6D位姿估计基准,汇总整理了多个数据集,还举行挑战赛,相关报告被CVPR2024接受和认可。

它提供3D物体模型和RGB-D图像,其中标注信息包括6D位姿、2D边界框和2D蒙版等。

包含数据集:LM 、LM-O  、T-LESS 、ITODD 、HB 、HOPE 、YCB-V 、RU-APC 、IC-BIN 、IC-MI 、TUD-L、TYO-L 

数据集汇总地址:https://bop.felk.cvut.cz/datasets/

BOP细分数据集标注内容特点
数据集LM15 件无纹理的家居用品,具有不同的颜色、形状和大小该实例具有明显的杂波,但只有轻微的遮挡
LM-O 15 件无纹理的家居用品,具有不同的颜色、形状和大小在LM基础上引入了不同遮挡级别的干扰
T-LESS30 个与工业相关的物体没有明显的纹理或可辨别的颜色
ITODD28 个真实的工业环境中物体使用高质量的 Gray-D 传感器拍摄
HB33 个物体,包括17 个玩具物体、8 个家居物体和 8 个行业相关物体在 13 个场景中捕获,复杂程度各不相同
HOPE28 个玩具杂货物品,10 个家庭/办公环境中的 50 个场景中捕获杂乱场景,有不同程度的遮挡
YCB-V21个日常生活物品,具有有不同形状、大小、纹理、重量和刚度在92个视频中捕获
RU-APC14 个纹理物品,杂乱仓库货架场景杂乱场景
IC-BIN2个物体,来自IC-MI的箱子拾取场景受到严重遮挡
IC-MI2个无纹理和4个有纹理的家居用品具有杂乱和轻微遮挡
TUD-L3个移动物体,8种照明变化场景8种照明条件下的移动物体
TYO-L21 个物体,每个物体在桌面设置中以多种姿势捕捉有4个不同的 桌布和五种不同的照明条件

一、数据集下载

BOP提供了整理汇总后的数据集

下载地址:https://huggingface.co/datasets/bop-benchmark/datasets/tree/main

比如下载YCB-V数据集,点进去能看到,然后点击下载即可

或者下载LM(Linemod)数据集:

二、数据格式

默认采用 BOP-webdataset 格式,数据集具有以下结构:

DATASET_NAME
├─ camera[_TYPE].json        # 相机参数(仅用于模拟传感器)
├─ dataset_info.json         # 特定于数据集的信息
├─ test_targets_bop19.json   # 用于评估的测试目标列表BOP挑战赛 2019/2020/2022等。
├─ models[_MODELTYPE][_eval] # 3D物体模型
│  ├─ models_info.json
│  ├─ obj_OBJ_ID.ply
├─ train|val|test[_TYPE]     # 对应训练集、验证集、测试集
│  ├─ SCENE_ID|OBJ_ID
│  │  ├─ scene_camera.json   # 相机参数(真实数据的相机)
│  │  ├─ scene_gt.json       
│  │  ├─ scene_gt_info.json
│  │  ├─ depth               # 深度图
│  │  ├─ mask                # 物体完整mask掩码图
│  │  ├─ mask_visib          # 物体实际可见部分的mask掩码图
│  │  ├─ rgb|gray            # 彩色图/灰度图
  • 其中,相应图像具有相同的 ID,例如 rgb/000000.png 和 depth/000000.png 是颜色和深度图像 相同的RGB-D帧。
  • 掩码的命名约定是IMID_GTID.png, 其中 IMID 是影像 ID,GTID 是真值注释的索引 (存储在scene_gt.json中)。

详细介绍参考官方文档:https://github.com/thodan/bop_toolkit/blob/master/docs/bop_datasets_format.md 

2.1 相机参数 scene_camera.json

通常每个物体有一组图像数据,数据集有多个物体,形成多组数据。

每组图像都有文件scene_camera.json,表示真实相机的参数,其中包含每个图像的以下信息:

  • cam_K - 3x3 固有相机矩阵 K。
  • depth_scale - 将深度图像乘以此系数,得到以毫米为单位的深度。
  • cam_R_w2c(可选)- 3x3 旋转矩阵R_w2c。
  • cam_t_w2c(可选)- 3x1 平移向量t_w2c。
  • view_level(可选)- 视点细分级别。

注意,每个图像的矩阵 K 可能不同。camera.json仅表示用于在渲染训练图像时模拟使用的传感器。

2.2 真实姿势信息 scene_gt_info.json

文件scene_gt_info.json中提供了以下有关地面真实姿势的信息:

  • bbox_obj - 对象轮廓的 2D 边界框,由 (x,y ,width,height),其中(x, y)是边界框的左上角。
  • bbox_visib - 对象剪影可见部分的 2D 边界框。
  • px_count_all - 对象侧面像中的像素数。
  • px_count_valid - 对象侧面图像中具有有效 深度测量(即深度图像中的非零值)。
  • px_count_visib - 对象可见部分的像素数 剪影。
  • visib_fract - 对象轮廓的可见部分 (= px_count_visib/px_count _all)。

2.3 3D物体模型

3D 对象模型以PLY格式提供,包括顶点法线。

  • 大多数模型还包括顶点颜色或顶点纹理与保存为单独图像的纹理相协调。
  • 顶点法线是使用 MeshLab 作为面的角度加权和计算的 入射到顶点的法线
  • 每个包含对象模型的文件夹都包含文件models_info.json,其中包括每个对象模型的 3D 边界框和直径。直径为计算为任意一对模型顶点之间的最大距离。

2.4 坐标系

所有坐标系(模型、相机、世界)都是右手坐标系。

  • 在模型坐标系中,Z 轴指向上方(当对象 站立“自然直立”),原点与中心重合 对象模型的 3D 边界框。
  • 相机坐标系与 OpenCV 中一样,相机沿 Z 轴查看。

单位信息:

  • 3D 物体模型:1 毫米
  • 平移矢量: 1 mm

2.5 数据格式示例

以YCB-V数据集为例,看下其中一个物体的示例数据:

depth文件夹存放深度图

mask文件夹中,存放物体完整mask掩码图

mask_visib文件夹中,存放物体实际可见部分的mask掩码图

rgb文件夹存放彩色图片

scene_camera.json文件

{
  "1": {"cam_K": [1066.778, 0.0, 312.9869, 0.0, 1067.487, 241.3109, 0.0, 0.0, 1.0], "cam_R_w2c": [0.775038, 0.630563, -0.0413049, 0.1427, -0.238322, -0.960645, -0.615591, 0.738643, -0.27469], "cam_t_w2c": [22.278120142899976, 67.27103635299997, 833.583980809], "depth_scale": 0.1},
  "36": {"cam_K": [1066.778, 0.0, 312.9869, 0.0, 1067.487, 241.3109, 0.0, 0.0, 1.0], "cam_R_w2c": [0.780182, 0.625096, -0.0238987, 0.151021, -0.225288, -0.962516, -0.607049, 0.747329, -0.270168], "cam_t_w2c": [5.508214978099937, 64.68344464100001, 825.7533207070001], "depth_scale": 0.1},
  "47": {"cam_K": [1066.778, 0.0, 312.9869, 0.0, 1067.487, 241.3109, 0.0, 0.0, 1.0], "cam_R_w2c": [0.767769, 0.640207, -0.0257968, 0.152583, -0.221792, -0.963082, -0.622293, 0.735488, -0.26797], "cam_t_w2c": [27.66960968699998, 63.071926080000004, 832.8279904959999], "depth_scale": 0.1},
  "83": {"cam_K": [1066.778, 0.0, 312.9869, 0.0, 1067.487, 241.3109, 0.0, 0.0, 1.0], "cam_R_w2c": [0.747494, 0.663726, -0.0268341, 0.151009, -0.209129, -0.966158, -0.646876, 0.718145, -0.256551], "cam_t_w2c": [47.37378315260004, 70.23191834300002, 839.83011703], "depth_scale": 0.1},
  "112": {"cam_K": [1066.778, 0.0, 312.9869, 0.0, 1067.487, 241.3109, 0.0, 0.0, 1.0], "cam_R_w2c": [0.732966, 0.679258, -0.0369964, 0.154704, -0.219403, -0.963291, -0.66244, 0.700336, -0.265899], "cam_t_w2c": [57.30521621640001, 60.03261259300005, 845.084446656], "depth_scale": 0.1},
  "1024": {"cam_K": [1066.778, 0.0, 312.9869, 0.0, 1067.487, 241.3109, 0.0, 0.0, 1.0], "cam_R_w2c": [0.221497, 0.974633, -0.0320828, 0.293663, -0.0980389, -0.950868, -0.929893, 0.201193, -0.307929], "cam_t_w2c": [84.5553717548, 78.09197834190002, 966.855761809], "depth_scale": 0.1},
  "1027": {"cam_K": [1066.778, 0.0, 312.9869, 0.0, 1067.487, 241.3109, 0.0, 0.0, 1.0], "cam_R_w2c": [0.208285, 0.977538, -0.0322094, 0.291752, -0.0935287, -0.95191, -0.933541, 0.188871, -0.304679], "cam_t_w2c": [95.29885425239999, 83.36950151319999, 964.165435848], "depth_scale": 0.1},
  "1059": {"cam_K": [1066.778, 0.0, 312.9869, 0.0, 1067.487, 241.3109, 0.0, 0.0, 1.0], "cam_R_w2c": [0.184825, 0.982726, -0.00947274, 0.310088, -0.0674605, -0.948311, -0.932569, 0.172334, -0.3172], "cam_t_w2c": [100.85003064122, 67.49651895950004, 969.0728422079999], "depth_scale": 0.1},
...
}

scene_gt.json文件

{
  "1": [{"cam_R_m2c": [0.6155426282490462, -0.7872002747152219, -0.03771988906432555, -0.19894986552077276, -0.10889926681888931, -0.9739401059834828, 0.7625789371251613, 0.6070060649389416, -0.22364550906920733], "cam_t_m2c": [-31.677025422232273, -17.368816807616497, 865.056765056294], "obj_id": 1}, {"cam_R_m2c": [-0.888800154374123, 0.45524946687574985, -0.05275501966907288, 0.15161264602174085, 0.18344755196788856, -0.9712669209190921, -0.4324911950904046, -0.8712604167821704, -0.2320697374100931], "cam_t_m2c": [19.826959191155, 56.52491050704691, 810.7227026810766], "obj_id": 6}, {"cam_R_m2c": [0.800270328363595, -0.5984833728683278, -0.03721742358490441, -0.16673638817023093, -0.16247691893389601, -0.97252257766676, 0.5759917033378716, 0.7844862673094515, -0.22981459219802255], "cam_t_m2c": [-23.310093543898354, -112.62940453072957, 848.1679482820954], "obj_id": 14}, {"cam_R_m2c": [-0.09489741249029623, 0.3561386300696222, -0.9296019480411393, -0.34937416104044705, 0.8625018988232865, 0.36609704814610067, 0.932165006412512, 0.3595205652274382, 0.04257586846391211], "cam_t_m2c": [52.33599371521044, -13.031296641365195, 861.5899289137005], "obj_id": 19}, {"cam_R_m2c": [-0.9984789779904625, -0.046702003100451896, 0.029310392655164948, 0.04118009201782687, -0.27814158992816, 0.9596564448294642, -0.036666017780062427, 0.9594042011059428, 0.27964165456635065], "cam_t_m2c": [-24.98442834314123, 91.09670661036117, 685.170819763342], "obj_id": 20}],
  "36": [{"cam_R_m2c": [0.609160304011732, -0.7927779371553533, -0.020665842847375732, -0.18625494062652728, -0.11768910284587072, -0.9754267744096374, 0.7708650760967027, 0.5980404962914244, -0.2193500045932242], "cam_t_m2c": [-47.54392055014297, -20.624979740453274, 857.3694396811588], "obj_id": 1}, {"cam_R_m2c": [-0.885654032823929, 0.46297766711836735, -0.03563597970836668, 0.13642613789028796, 0.18608279820967355, -0.9730156842215326, -0.4438532397201184, -0.8666167711437901, -0.22796686931874305], "cam_t_m2c": [3.517734961917874, 53.76740226064, 803.2989808314162], "obj_id": 6}, {"cam_R_m2c": [0.7956314653073248, -0.6054474964433687, -0.020109911212931725, -0.15218610956201728, -0.1676389990666953, -0.9740308438419983, 0.5863531148783824, 0.7780298269242845, -0.2255194250661368], "cam_t_m2c": [-37.57128763014816, -115.82934553753682, 841.044974335238], "obj_id": 14}, {"cam_R_m2c": [-0.10098129392773866, 0.3390290986563458, -0.9353408405023759, -0.34637500340565003, 0.8693469251931312, 0.35250354851560134, 0.9326447803199308, 0.35957456267807025, 0.029642972835050057], "cam_t_m2c": [36.431813052732934, -15.061671846474432, 854.889665423068], "obj_id": 19}, {"cam_R_m2c": [-0.9984623750612651, -0.05417273393821578, 0.011792611042814375, 0.02623639801568292, -0.274310799977981, 0.9612824039468447, -0.04884079999762013, 0.9601139585387595, 0.27530992305310614], "cam_t_m2c": [-40.27985947489197, 87.0849679017978, 677.0522075201466], "obj_id": 20}],
  "47": [{"cam_R_m2c": [0.6245636521890725, -0.7806766111406835, -0.02154245471722178, -0.18248158481557564, -0.11905916022552619, -0.975974147637646, 0.7593548693744658, 0.6134888758861301, -0.21681937469597998], "cam_t_m2c": [-24.395090683468215, -21.783960857519098, 865.0794295130081], "obj_id": 1}, {"cam_R_m2c": [-0.894520458378818, 0.4455202651911757, -0.03668433387925216, 0.13243670002639793, 0.18573890794853912, -0.9736329537290823, -0.42695875163671215, -0.8757921280786526, -0.22515068766577487], "cam_t_m2c": [25.357235475837868, 52.66179328072182, 809.873745451658], "obj_id": 6}, {"cam_R_m2c": [0.807320112848335, -0.5897361063376075, -0.02111051938004192, -0.1481874231217827, -0.16797481282866994, -0.9745899708885118, 0.5712038666214954, 0.7899336536550774, -0.22300135488429054], "cam_t_m2c": [-14.412173387618193, -116.98979989756661, 848.76946639409], "obj_id": 14}, {"cam_R_m2c": [-0.08176790305726558, 0.34291594675714004, -0.9358005665368483, -0.34465464710178356, 0.8712861049416898, 0.34938989394733905, 0.9351606006571631, 0.3510967987887798, 0.046944407423005166], "cam_t_m2c": [59.49748765951539, -15.940989444141788, 860.9665492937945], "obj_id": 19}, {"cam_R_m2c": [-0.9993032187000758, -0.03468586763469483, 0.013799769394337228, 0.02273746658654025, -0.27237133848523803, 0.9619233928797483, -0.02960648331060263, 0.9615662504172701, 0.2729703664836574], "cam_t_m2c": [-20.983454465364908, 85.55142809136696, 684.4252367092936], "obj_id": 20}],
  "83": [{"cam_R_m2c": [0.6483560298162269, -0.7610510488761957, -0.02086610662784509, -0.1692011189126235, -0.11731610680604301, -0.9785743648106761, 0.7422968557005021, 0.6379953191679695, -0.2048329708565904], "cam_t_m2c": [-3.182798020397842, -14.00835493497242, 873.8116262427217], "obj_id": 1}, {"cam_R_m2c": [-0.9078584178495492, 0.4177062056136942, -0.03626756862269121, 0.12116889278699025, 0.17857338188688224, -0.9764368511592453, -0.4013865966547271, -0.8908605421313989, -0.21273198641370872], "cam_t_m2c": [44.345559041277, 60.13133053644625, 816.2833963297118], "obj_id": 6}, {"cam_R_m2c": [0.8251367861465224, -0.5645561164478825, -0.020629748503466508, -0.13583743253946046, -0.16282504159094316, -0.9772597366958712, 0.5483580610786056, 0.8091749254401457, -0.2110406512057419], "cam_t_m2c": [7.00537338156821, -109.3266555886105, 858.3053675688028], "obj_id": 14}, {"cam_R_m2c": [-0.051182081267789885, 0.34687788183738805, -0.9365126806882695, -0.33423610323086433, 0.8777158286503173, 0.3433663873103977, 0.9410979073728976, 0.3305899343507701, 0.07101581339481473], "cam_t_m2c": [80.50375242502996, -7.627733393267646, 867.1132222035583], "obj_id": 19}, {"cam_R_m2c": [-0.9998814983012471, -0.003861774590082771, 0.014912517026945876, 0.015403543280134506, -0.26132102760791526, 0.9651287621047637, 0.0001699907030837675, 0.9652438747296362, 0.2613491515087478], "cam_t_m2c": [-5.972908641135359, 91.22401864073694, 691.9137142738838], "obj_id": 20}],
  "112": [{"cam_R_m2c": [0.6647649468317126, -0.7464489096042396, -0.03001657167948718, -0.17934682759164805, -0.1204579130201553, -0.9763836821566041, 0.725204605642379, 0.6544489331842311, -0.21394953128846064], "cam_t_m2c": [7.423095042063199, -24.208037318315366, 878.8066953601489], "obj_id": 1}, {"cam_R_m2c": [-0.9164409834258465, 0.3975651734102653, -0.045588733607644205, 0.12901204313969786, 0.1856895576876478, -0.9741022379218828, -0.3788031962736472, -0.8985881514318583, -0.22146426682502685], "cam_t_m2c": [53.92454489616582, 50.30051928831908, 820.916944720947], "obj_id": 6}, {"cam_R_m2c": [0.8371121143302147, -0.5462122309108142, -0.029919488718101708, -0.14479700119590075, -0.1685049959179436, -0.9750081519139011, 0.5275190636003836, 0.8205228433109507, -0.22014774919225136], "cam_t_m2c": [16.82039765317768, -119.40906570753043, 862.1248702849944], "obj_id": 14}, {"cam_R_m2c": [-0.03066579499454619, 0.35842471964468575, -0.9330546466130516, -0.3433961351884973, 0.8728955476024446, 0.34660120723264787, 0.9386892054263638, 0.3310359762596514, 0.09631358656249628], "cam_t_m2c": [90.9578870625636, -18.115127756738985, 870.214102795854], "obj_id": 19}, {"cam_R_m2c": [-0.9995255713303868, 0.017530980458125914, 0.02532545822207572, 0.019633115389425172, -0.27092669739461855, 0.9623997900400193, 0.023733079584714534, 0.9624400538470402, 0.27045397974048285], "cam_t_m2c": [0.8525459893978651, 82.84611660913978, 698.0728419733201], "obj_id": 20}],
  "1024": [{"cam_R_m2c": [0.9704843061877538, -0.24109489453234348, 0.005747985968890892, -0.05702875853463301, -0.2525872788160113, -0.9658917605444589, 0.23432352592357092, 0.9370555030237454, -0.2588812841574994], "cam_t_m2c": [71.41915012233497, -8.855300323114646, 1000.9610991395713], "obj_id": 1}, {"cam_R_m2c": [-0.9818049404650917, -0.1895412287960604, -0.011535627356135513, -0.03769862638683262, 0.25409208731971417, -0.9664445035770324, 0.18611318695445572, -0.9484256537221011, -0.2566141917897591], "cam_t_m2c": [67.01964196225809, 72.7948380863339, 934.7868376282179], "obj_id": 6}, {"cam_R_m2c": [0.9997595271389749, 0.021799496359123954, 0.0022441839567555817, 0.007919269824689405, -0.26388702002464454, -0.9645210969783664, -0.020434334502123813, 0.9643072544399508, -0.2639963679079688], "cam_t_m2c": [84.42283358552737, -100.81966035400322, 972.6189230163418], "obj_id": 14}, {"cam_R_m2c": [0.5378109085736478, 0.3445428353846606, -0.7694472931938168, -0.3433293601926506, 0.9230761784574881, 0.17336187404666403, 0.76998924176551, 0.17093743837230568, 0.6147327127097234], "cam_t_m2c": [134.73122615884228, 12.143600548964699, 949.5835934469427], "obj_id": 19}, {"cam_R_m2c": [-0.8145733310772104, 0.5795937271002144, 0.023271274982038334, -0.16022702734378425, -0.2633815493028152, 0.9512920548835528, 0.5574926601599337, 0.77116864864905, 0.3074100481839816], "cam_t_m2c": [-48.587286695603, 95.27932302573576, 863.400450652429], "obj_id": 20}],
  "1027": [{"cam_R_m2c": [0.9736380541620182, -0.2280117975833827, 0.006327552801320991, -0.05238012971444529, -0.25049721582618745, -0.9666989890232974, 0.22200334685406545, 0.9408839944912755, -0.25583655962012575], "cam_t_m2c": [82.84236377136222, -3.202382029485854, 998.3668973579089], "obj_id": 1}, {"cam_R_m2c": [-0.9791725627289203, -0.20273762671433873, -0.010923135997289196, -0.0410220439845687, 0.2502411897729927, -0.9673135255248978, 0.19884576291409187, -0.9467190984057884, -0.2533455910721295], "cam_t_m2c": [77.26279404150836, 78.21354304065359, 931.9933078713171], "obj_id": 6}, {"cam_R_m2c": [0.999374696732068, 0.03525470569420298, 0.0027528023614022453, 0.011854531524012881, -0.2606557192210831, -0.9653590276533489, -0.03331690907664211, 0.9647882098792482, -0.26091052240056956], "cam_t_m2c": [95.85264694795609, -95.20576749627322, 970.1547235570508], "obj_id": 14}, {"cam_R_m2c": [0.5490441191287648, 0.34297485437741737, -0.7621805354210485, -0.33866431656913015, 0.9249997374251607, 0.17228159729595274, 0.7641048830135074, 0.1635321897826169, 0.624019860272118], "cam_t_m2c": [145.4036728839161, 17.882345049387965, 946.1122610800769], "obj_id": 19}, {"cam_R_m2c": [-0.8066888252132398, 0.5905149883916639, 0.023371657751691022, -0.16166990776914283, -0.25854647899038274, 0.95237368538674, 0.5684344898274531, 0.764490516199126, 0.30403461998260806], "cam_t_m2c": [-39.34184312110956, 100.00247891645904, 862.0280513435945], "obj_id": 20}],
  "1059": [{"cam_R_m2c": [0.9782295367682443, -0.20533659652444655, 0.030068581891794056, -0.026945973299812093, -0.269340018094528, -0.9626676876287587, 0.20576934213763715, 0.9409000441338533, -0.2690093747814608], "cam_t_m2c": [91.91297764509498, -19.065713859707213, 1001.8789157884851], "obj_id": 1}, {"cam_R_m2c": [-0.9742128751147976, -0.22526372153623223, 0.012885668716460606, -0.07208852214553628, 0.25663206687277745, -0.9638163225739518, 0.21380719264399567, -0.9398914255637064, -0.26625313092092107], "cam_t_m2c": [82.90533755190265, 63.01687304404585, 936.714193434043], "obj_id": 6}, {"cam_R_m2c": [0.9979408481092544, 0.05846768501180202, 0.026374504656193298, 0.041352748038722534, -0.27214957636651804, -0.9613658434349226, -0.049031741700048634, 0.9604769635513392, -0.2740072162843031], "cam_t_m2c": [107.1130420578321, -110.27386886274778, 972.2166924287133], "obj_id": 14}, {"cam_R_m2c": [0.5709597738530855, 0.31874303674173754, -0.7565764595490821, -0.3325428987822525, 0.9323597738062869, 0.1418421956290973, 0.750612474435284, 0.17060742606646714, 0.6383363540398707], "cam_t_m2c": [152.9804531357707, 4.513159355754437, 948.9277642986692], "obj_id": 19}, {"cam_R_m2c": [-0.7923237136450533, 0.6101010484593035, 0.000812568704820232, -0.1925048617747842, -0.2512647153904161, 0.9485814388073351, 0.5789352987188576, 0.7514269629780099, 0.3165303330408628], "cam_t_m2c": [-35.40333944213483, 82.3207125125342, 868.9133541232341], "obj_id": 20}],
...
}

scene_gt_info.json文件

{
  "1": [{"bbox_obj": [206, 126, 132, 194], "bbox_visib": [206, 128, 132, 192], "px_count_all": 23236, "px_count_valid": 21318, "px_count_visib": 21729, "visib_fract": 0.9351437424685832}, {"bbox_obj": [282, 280, 112, 73], "bbox_visib": [282, 280, 112, 73], "px_count_all": 7335, "px_count_valid": 4794, "px_count_visib": 7316, "visib_fract": 0.9974096796182685}, {"bbox_obj": [209, 45, 137, 113], "bbox_visib": [209, 45, 137, 113], "px_count_all": 12243, "px_count_valid": 10658, "px_count_visib": 12206, "visib_fract": 0.9969778649023932}, {"bbox_obj": [329, 116, 90, 213], "bbox_visib": [329, 116, 90, 213], "px_count_all": 7586, "px_count_valid": 5142, "px_count_visib": 7448, "visib_fract": 0.9818085947798576}, {"bbox_obj": [92, 332, 349, 127], "bbox_visib": [92, 332, 349, 127], "px_count_all": 25062, "px_count_valid": 16519, "px_count_visib": 25044, "visib_fract": 0.999281781182667}],
  "36": [{"bbox_obj": [186, 122, 132, 194], "bbox_visib": [186, 124, 132, 192], "px_count_all": 23617, "px_count_valid": 21257, "px_count_visib": 22245, "visib_fract": 0.9419062539695982}, {"bbox_obj": [260, 277, 113, 73], "bbox_visib": [260, 277, 113, 73], "px_count_all": 7411, "px_count_valid": 4406, "px_count_visib": 7411, "visib_fract": 1.0}, {"bbox_obj": [191, 40, 137, 112], "bbox_visib": [191, 40, 137, 112], "px_count_all": 12409, "px_count_valid": 11153, "px_count_visib": 12382, "visib_fract": 0.9978241598839552}, {"bbox_obj": [311, 112, 87, 215], "bbox_visib": [311, 112, 87, 215], "px_count_all": 7724, "px_count_valid": 5485, "px_count_visib": 7681, "visib_fract": 0.994432936302434}, {"bbox_obj": [63, 326, 355, 127], "bbox_visib": [63, 326, 355, 127], "px_count_all": 25528, "px_count_valid": 18324, "px_count_visib": 25413, "visib_fract": 0.9954951425885302}],
  "47": [{"bbox_obj": [216, 122, 130, 192], "bbox_visib": [216, 124, 130, 190], "px_count_all": 23159, "px_count_valid": 21000, "px_count_visib": 21673, "visib_fract": 0.9358348806079709}, {"bbox_obj": [289, 275, 112, 73], "bbox_visib": [289, 275, 112, 73], "px_count_all": 7260, "px_count_valid": 4759, "px_count_visib": 7260, "visib_fract": 1.0}, {"bbox_obj": [222, 40, 135, 111], "bbox_visib": [222, 40, 135, 111], "px_count_all": 12125, "px_count_valid": 10929, "px_count_visib": 12099, "visib_fract": 0.9978556701030927}, {"bbox_obj": [340, 111, 86, 215], "bbox_visib": [340, 111, 86, 215], "px_count_all": 7553, "px_count_valid": 5084, "px_count_visib": 7461, "visib_fract": 0.9878194095061565}, {"bbox_obj": [97, 322, 350, 124], "bbox_visib": [97, 322, 350, 124], "px_count_all": 24848, "px_count_valid": 15756, "px_count_visib": 24838, "visib_fract": 0.9995975531229878}],
  "83": [{"bbox_obj": [244, 133, 127, 189], "bbox_visib": [244, 135, 127, 187], "px_count_all": 22665, "px_count_valid": 19893, "px_count_visib": 21319, "visib_fract": 0.9406132803882639}, {"bbox_obj": [315, 285, 111, 71], "bbox_visib": [315, 285, 111, 71], "px_count_all": 7128, "px_count_valid": 4491, "px_count_visib": 7124, "visib_fract": 0.999438832772166}, {"bbox_obj": [250, 52, 133, 110], "bbox_visib": [250, 52, 133, 110], "px_count_all": 11838, "px_count_valid": 9909, "px_count_visib": 11814, "visib_fract": 0.9979726305119108}, {"bbox_obj": [366, 123, 84, 213], "bbox_visib": [366, 123, 84, 213], "px_count_all": 7510, "px_count_valid": 5251, "px_count_visib": 7389, "visib_fract": 0.9838881491344873}, {"bbox_obj": [123, 330, 346, 120], "bbox_visib": [123, 330, 346, 120], "px_count_all": 24201, "px_count_valid": 15320, "px_count_visib": 24158, "visib_fract": 0.9982232139167803}],
  "112": [{"bbox_obj": [257, 121, 127, 188], "bbox_visib": [257, 122, 127, 187], "px_count_all": 22397, "px_count_valid": 20236, "px_count_visib": 21050, "visib_fract": 0.939858016698665}, {"bbox_obj": [327, 272, 111, 71], "bbox_visib": [327, 272, 111, 71], "px_count_all": 7043, "px_count_valid": 4349, "px_count_visib": 7035, "visib_fract": 0.9988641204032372}, {"bbox_obj": [262, 41, 133, 109], "bbox_visib": [262, 41, 133, 109], "px_count_all": 11731, "px_count_valid": 10683, "px_count_visib": 11647, "visib_fract": 0.9928394851248827}, {"bbox_obj": [378, 110, 85, 212], "bbox_visib": [378, 110, 85, 212], "px_count_all": 7558, "px_count_valid": 5128, "px_count_visib": 7393, "visib_fract": 0.9781688277322043}, {"bbox_obj": [134, 317, 344, 118], "bbox_visib": [134, 317, 344, 118], "px_count_all": 23666, "px_count_valid": 14994, "px_count_visib": 23584, "visib_fract": 0.9965351136651737}],
  "1024": [{"bbox_obj": [334, 149, 112, 170], "bbox_visib": [334, 154, 112, 165], "px_count_all": 17627, "px_count_valid": 15328, "px_count_visib": 15641, "visib_fract": 0.8873319339649401}, {"bbox_obj": [341, 292, 97, 66], "bbox_visib": [341, 292, 97, 66], "px_count_all": 5742, "px_count_valid": 3714, "px_count_visib": 5705, "visib_fract": 0.9935562521769419}, {"bbox_obj": [342, 80, 127, 101], "bbox_visib": [342, 80, 127, 101], "px_count_all": 9552, "px_count_valid": 8781, "px_count_visib": 9541, "visib_fract": 0.9988484087102177}, {"bbox_obj": [428, 154, 97, 198], "bbox_visib": [428, 154, 97, 198], "px_count_all": 9981, "px_count_valid": 7073, "px_count_visib": 9943, "visib_fract": 0.9961927662558862}, {"bbox_obj": [94, 301, 253, 118], "bbox_visib": [94, 301, 253, 118], "px_count_all": 13689, "px_count_valid": 9113, "px_count_visib": 13622, "visib_fract": 0.9951055592081233}],
  "1027": [{"bbox_obj": [346, 155, 113, 170], "bbox_visib": [346, 159, 113, 166], "px_count_all": 17731, "px_count_valid": 15453, "px_count_visib": 15699, "visib_fract": 0.885398454683887}, {"bbox_obj": [352, 298, 98, 66], "bbox_visib": [352, 298, 98, 66], "px_count_all": 5778, "px_count_valid": 3499, "px_count_visib": 5778, "visib_fract": 1.0}, {"bbox_obj": [355, 86, 127, 101], "bbox_visib": [355, 86, 127, 101], "px_count_all": 9650, "px_count_valid": 8657, "px_count_visib": 9639, "visib_fract": 0.998860103626943}, {"bbox_obj": [441, 161, 97, 198], "bbox_visib": [441, 161, 97, 198], "px_count_all": 10080, "px_count_valid": 6927, "px_count_visib": 9978, "visib_fract": 0.9898809523809524}, {"bbox_obj": [105, 306, 253, 120], "bbox_visib": [105, 306, 253, 120], "px_count_all": 13745, "px_count_valid": 9595, "px_count_visib": 13491, "visib_fract": 0.9815205529283376}],
  "1059": [{"bbox_obj": [354, 138, 116, 170], "bbox_visib": [354, 140, 116, 168], "px_count_all": 17615, "px_count_valid": 14947, "px_count_visib": 15552, "visib_fract": 0.8828839057621345}, {"bbox_obj": [359, 281, 97, 65], "bbox_visib": [359, 281, 97, 65], "px_count_all": 5683, "px_count_valid": 3645, "px_count_visib": 5676, "visib_fract": 0.9987682562027098}, {"bbox_obj": [368, 69, 127, 102], "bbox_visib": [368, 69, 127, 102], "px_count_all": 9599, "px_count_valid": 8503, "px_count_visib": 9585, "visib_fract": 0.9985415147411189}, {"bbox_obj": [450, 146, 95, 196], "bbox_visib": [450, 146, 95, 196], "px_count_all": 10051, "px_count_valid": 5521, "px_count_visib": 9989, "visib_fract": 0.9938314595562631}, {"bbox_obj": [112, 284, 249, 121], "bbox_visib": [112, 284, 249, 121], "px_count_all": 13366, "px_count_valid": 8972, "px_count_visib": 13219, "visib_fract": 0.9890019452341763}],
...
}

三、BOP Challenge 2023数据集(CVPR2024)

这些数据集包括超过 2M 张图像,显示超过 50K 个不同的对象。

这些图像最初是使用 BlenderProc 为 MegaPose 合成的。这些对象来自 Google Scanned Objects 和 ShapeNetCore 数据集,其 3D 模型可从各自的网站下载。

3.1 MegaPose-GSO数据集

  • 3D物体模型可以从Google扫描物体下载。为了使模型与 GT 姿势兼容,需要将对象居中并重新缩放它们,使其适合单位球体,以及将归一化模型缩放 0.1。有关伪代码,参阅此注释。
  • 从 BOP 中使用的obj_id映射到原始对象标识符
  • 从映像键映射到存储该键的分片索引
  • 数据集采用BOP-webdataset格式,分为1040个分片,每个分片包含~1000张图片以及对象注解和相机参数。

使用以下 URL 模板下载分片( is from to )。<SHARD-ID>000000至001039

https://huggingface.co/datasets/bop-benchmark/datasets/resolve/main/MegaPose-GSO/shard-<SHARD-ID>.tar

 比如:

https://bop.felk.cvut.cz/media/data/bop_datasets/bop23_datasets/megapose-gso/train_pbr_web/shard-000000.tar
https://bop.felk.cvut.cz/media/data/bop_datasets/bop23_datasets/megapose-gso/train_pbr_web/shard-000001.tar
......
https://bop.felk.cvut.cz/media/data/bop_datasets/bop23_datasets/megapose-gso/train_pbr_web/shard-001039.tar

3.2 MegaPose-ShapeNetCore 数据集

  • 可以从 ShapeNet 下载 3D 对象模型(将模型缩放 0.1 以与 GT 姿势兼容)
  • 从 BOP 中使用的obj_id映射到原始对象标识符
  • 从映像键映射到存储该键的分片索引
  • 数据集采用BOP-webdataset格式,分为1040个分片,每个分片包含~1000张图片以及对象注解和相机参数。

使用以下 URL 模板下载分片( is from to )。<SHARD-ID>000000至001039

https://huggingface.co/datasets/bop-benchmark/datasets/resolve/main/MegaPose-ShapeNetCore/shard-<SHARD-ID>.tar

四、BOP挑战赛 6D位姿估计

BOP Challenge 2023 报告已被 CVPR 2024接收和认可,下面6D位姿估计的排行榜。

主要在LM-O, T-LESS, TUD-L, IC-BIN, ITODD, HB, YCB-V数据集进行训练和测试的。

对应可见物体的测试,排行榜:https://bop.felk.cvut.cz/leaderboards/

对应不可见物体的测试,排行榜:https://bop.felk.cvut.cz/leaderboards/pose-estimation-unseen-bop23/core-datasets/

推荐一下Top2的方法:

Top1——FoundationPose CVPR2024 ,https://github.com/NVlabs/FoundationPose

Top2——SAM-6D CVPR2024 ,https://github.com/JiehongLin/SAM-6D/

分享完成~

本文先介绍到这里,后面会分享“6D位姿估计”的其它数据集、算法、代码、具体应用示例。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1646848.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

某站戴师兄——Excel实战

1、设置下拉选项&#xff1a;数据——数据验证——设置 如下设置&#xff1a; 2、If、sumif、index、match综合应用&#xff1a; sumif(条件区域&#xff0c;条件&#xff0c;目标区域&#xff09; sumifs(目标区域,条件区域1&#xff0c;条件1,条件区域2&#xff0c;条件2) …

Python深度学习基于Tensorflow(3)Tensorflow 构建模型

文章目录 数据导入和数据可视化数据集制作以及预处理模型结构低阶 API 构建模型中阶 API 构建模型高阶 API 构建模型保存和导入模型 这里以实际项目CIFAR-10为例&#xff0c;分别使用低阶&#xff0c;中阶&#xff0c;高阶 API 搭建模型。 这里以CIFAR-10为数据集&#xff0c;C…

04 深入浅出JVM

本课时的主题是 JVM 原理。JVM 是 Java 程序运行基础&#xff0c;面试时一定会遇到 JVM 相关的题。本课时会先对面试中 JVM 的考察点进行汇总介绍。然后对 JVM 内存模型、Java 的类加载机制、常用的 GC 算法这三个知识点进行详细讲解。最后汇总 JVM 考察点和加分项&#xff0c;…

Go 语言(四)【常用包使用】

1、命令行参数包 flag flag 包就是一个用来解析命令行参数的工具。 1.1、os.Args import ("fmt""os" )func main() {if len(os.Args) > 0 {for index, arg : range os.Args {fmt.Printf("args[%d]%v\n", index, arg)}} } 运行结果&#…

C#连接S7-200 smart通讯测试

honeytree 一、编程环境 VS2022软件&#xff0c;选择windows窗体应用&#xff08;.NET FrameWork&#xff09;&#xff1a;​博途TIA/WINCC社区VX群 ​博途TIA/WINCC社区VX群 添加NuGet程序包&#xff1b;S7netplus 二、引用http://S7.net 三、建立PLC链接 S7-200smart和…

41.乐理基础-拍号-小节、小节线、终止线

小节线&#xff1a;下图红框中的竖线就是小节线 小节、终止线&#xff1a;最后的终止线就是文字意思表示乐谱结束了&#xff0c;后面没有了 下图中 0.5表示0.5拍&#xff08;八分音符&#xff09;、1表示1拍&#xff08;四分音符&#xff09;、0.25表示0.25拍&#xff08;十六分…

MySQL#MySql数据库的操作

目录 一、创建数据库 二、字符集和校验规则 1.查看系统默认字符集以及校验规则 2.查看数据库支持的字符集 3.查看数据库支持的字符集校验规则 4.校验规则对数据库的影响 1.以UTF-8格式创建数据库 2.不区分大小写 3.区分大小写 4 大小写对数据库的影响 三、操纵数据…

ubuntu20.04搭建Fabric教程

本章节环境配置 ubuntu: 20.04 go&#xff1a;1.16.3 docker: 20.10.6 docker-compose: 1.27.2 fabric&#xff1a;2.2.0 fabric-ca: 1.4.9 一 搭建通道 新建工作目录 mkdir fabric && cd fabric配置go代理 go env -w GO111MODULEon ​ #更新下载包的镜像 go env …

学华为沟通,汇总5大项目沟通技巧

高效沟通在项目管理中的重要性不容小觑&#xff0c;它是确保项目顺利进行、提升团队协作效率、实现项目目标的关键因素。如果沟通不畅&#xff0c;往往容易导致成员对项目目标理解不一致&#xff0c;或信息传递不及时不准确&#xff0c;导致项目工作方向偏差&#xff0c;增加项…

Redission分布式锁 watch dog 看门狗机制

为了避免Redis实现的分布式锁超时&#xff0c;Redisson中引入了watch dog的机制&#xff0c;他可以帮助我们在Redisson实例被关闭前&#xff0c;不断的延长锁的有效期。 自动续租&#xff1a;当一个Redisson客户端实例获取到一个分布式锁时&#xff0c;如果没有指定锁的超时时…

cookie没有携带的问题

背景&#xff1a; build-model应用在hcs迁移的时候&#xff0c;前、后端各自部署了一个新应用&#xff0c;但是调试时候发现没有cookie&#xff0c;导致鉴权失败&#xff01; 注&#xff1a; 后端通过cookie中的token做鉴权的&#xff0c;前端调用接口的时候&#xff0c;查看&…

我是如何带团队从0到1做了AI中台

经历心得 我从18年初就开始带这小团队开始做项目&#xff0c;比如最初的数字广东的协同办公项目&#xff0c;以及粤信签小程序等&#xff0c;所以&#xff0c;在团队管理&#xff0c;人员安排&#xff0c;工作分工&#xff0c;项目拆解等方面都有一定的经验。 19年中旬&#…

微搭低代码入门03页面管理

目录 1 创建页面2 页面布局3 页面跳转总结 上一篇我们介绍了应用的基本操作&#xff0c;掌握了应用的概念后接着我们需要掌握页面的常见操作。 1 创建页面 打开应用的编辑器&#xff0c;在顶部导航条点击创建页面图标 在创建页面的时候可以从空白新建&#xff0c;也可以使用模…

第78天:WAF攻防-菜刀冰蝎哥斯拉流量通讯特征绕过检测反制感知

目录 案例一&#xff1a; 菜刀-流量&绕过&特征&检测 菜刀的流量特征 案例二&#xff1a;冰蝎-流量&绕过&特征&检测 冰蝎使用教程 冰蝎的流量特征 案例三&#xff1a; 哥斯拉-流量&绕过&特征&检测 哥斯拉使用教程 哥斯拉的流量特征…

龙迅LT9211D MIPI桥接到2 PORT LVDS,分辨率支持高达3840*2160*30HZ

龙迅LT9211D描述&#xff1a; Lontium LT9211D是一款高性能的MIPI DSI/CSI- 2到双端口LVDS转换器。LT9211D反序列化输入的MIPI视频数据&#xff0c;解码数据包&#xff0c;并将格式化的视频数据流转换为AP和移动显示面板或摄像机之间的LVDS发射机输出。LT9211D支持最大14 dB输…

基于Springboot+Vue+Java的学生就业管理系统

&#x1f49e; 文末获取源码联系 &#x1f649; &#x1f447;&#x1f3fb; 精选专栏推荐收藏订阅 &#x1f447;&#x1f3fb; &#x1f380;《Java 精选实战项目-计算机毕业设计题目推荐-期末大作业》&#x1f618; 更多实战项目~ https://www.yuque.com/liuyixin-rotwn/ei3…

MYSQL基础架构、执行过程分析、事务的实现、索引的选择、覆盖索引

本文是mysql45讲的1-5的总结 文章目录 基础架构连接器分析器优化器执行器SQL查询执行过程详细执行步骤 SQL更新执行过程重要的日志模块&#xff1a;redo log重要的日志模块&#xff1a;binlog阶段性提交 事务事务隔离的实现启动 索引数据库索引模型InnoDB索引组织结构主键选择…

电源小白入门学习7——USB充电、供电、电源路径管理

电源小白入门学习7——USB充电、供电、电源路径管理 USB充电系统需要考虑的因素开关充电和线性充电充电路径管理输入限流路径管理&#xff08;动态功率管理&#xff09;理想二极管帮助提高电池利用率输入过充抑制 上期我们介绍了锂离子电池的电池特性&#xff0c;及充电电路设计…

字节跳动(社招)三面算法原题

TikTok 喘息 继上月通过强制剥离 TikTok 法案后&#xff0c;美国众议院在当地时间 20 日下午以 360 票赞成 58 票反对通过了新的法案&#xff1a;剥离 TikTok 的期限由生效后 165 天调整至 270 天之内&#xff0c;即今年 11 月的美国总统大选后。 之前我们讲过&#xff0c;TikT…

[安全开发]如何搭建一款自己的网安微信机器人

前言 hxd写的一个微信网安机器人。 原理 基于HOOK的微信机器人&#xff0c;以往的机器人大多数为协议机器人&#xff0c;封号概率极大&#xff08;下面会详细讲解hook和协议的区别&#xff09;&#xff0c;而HOOK机制的大大减小了封号几率。 什么是协议机器人&#xff1f; …