目录
list的介绍:
list的构造:
遍历:
reverse、sort、unique
list的模拟实现:
反向迭代器:
list与vector的比较:
list的介绍:
list是序列容器,允许在序列内的任何位置执行O(1)的插入和删除操作,以及双向迭代。
list的构造:
void TestList1()
{
list<int> l1; // 构造空的l1
list<int> l2(4, 10); // 4个10
list<int> l3(l2.begin(), l2.end()); // 用l2的[begin(), end())构造l3
list<int> l4(l3); // 用l3拷贝构造l4
// 以数组为迭代器区间构造l5
int arr[] = { 16,2,77,29 };
list<int> l5(arr, arr + sizeof(arr) / sizeof(int));
// 列表格式初始化C++11
list<int> l6{ 1, 2, 3, 4, 5 };
}
遍历:
list只能通过迭代器和范围for进行遍历,不支持下标访问。
void test_list2()
{
list<int> lt;
lt.push_back(1);
lt.push_back(2);
lt.push_back(3);
lt.push_back(4);
list<int>::iterator it = lt.begin();
while (it != lt.end())
{
cout << *it << " ";
++it;
}
cout << endl;
list<int>::reverse_iterator rit = lt.rbegin();
while (rit != lt.rend())
{
cout << *rit << " ";
++rit;
}
cout << endl;
for (auto e : lt)
{
cout << e << " ";
}
cout << endl;
}
reverse、sort、unique(有序,去重)
void test_list2()
{
list<int> lt;
lt.push_back(1);
lt.push_back(3);
lt.push_back(3);
lt.push_back(2);
lt.push_back(4);
lt.sort(); //排序
lt.reverse(); //逆置
lt.unique(); //去重(有序)
}
list的模拟实现:
List 的迭代器是将原生指针进行封装,把节点指针放到迭代器类中,对迭代器类进行运算符重载,就可以像顺序容器的指针一样进行访问和修改
namespace qwe
{
template<class T>
struct ListNode
{
ListNode<T>* _next;
ListNode<T>* _prev;
T _data;
ListNode(const T& data = T())
:_next(nullptr)
, _prev(nullptr)
, _data(data)
{}
};
// T T& T*
template<class T, class Ref, class Ptr>
struct __list_iterator
{
typedef ListNode<T> Node;
typedef __list_iterator<T, Ref, Ptr> self;
Node* _node;
__list_iterator(Node* x)
:_node(x)
{}
Ref operator*()
{
return _node->_data;
}
Ptr operator->()
{
return &_node->_data;
}
//++it
self& operator++()
{
_node = _node->_next;
return *this;
}
//it++
self operator++(int)
{
self tmp(*this);
_node = _node->_next;
return tmp;
}
//--it
self operator--()
{
_node = _node->_prev;
return *this;
}
//it--
self operator--(int)
{
self tmp(*this);
_node = _node->_prev;
return tmp;
}
bool operator!=(const self& it)const
{
return _node != it._node;
}
bool operator==(const self& it)const
{
return _node == it._node;
}
};
template<class T>
class list
{
typedef ListNode<T> Node;
public:
typedef __list_iterator<T, T&, T*> iterator;
typedef __list_iterator<T, const T&, const T*> const_iterator;
typedef reverse_iterator<const_iterator, const T&, const T* > const_reverse_iterator;
typedef reverse_iterator<iterator, T&, T*> reverse_iterator;
reverse_iterator rbegin()
{
return reverse_iterator(end());
}
reverse_iterator rend()
{
return reverse_iterator(begin());
}
iterator begin()
{
return iterator(_head->_next);
}
iterator end()
{
return iterator(_head);
}
const_iterator begin()const
{
return const_iterator(_head->_next);
}
const_iterator end()const
{
return const_iterator(_head);
}
list()
{
_head = new Node();
_head->_next = _head;
_head->_prev = _head;
}
//list<Date> lt1(5, Date(2022, 1, 11));
//list<int> lt2(5, 1)
list(int n, const T& val = T())
{
_head = new Node();
_head->_next = _head;
_head->_prev = _head;
for (int i = 0; i < n; ++i)
{
push_back(val);
}
}
list(size_t n, const T& val = T())
{
_head = new Node();
_head->_next = _head;
_head->_prev = _head;
for (size_t i = 0; i < n; ++i)
{
push_back(val);
}
}
template<class InputIterator>
list(InputIterator first, InputIterator last)
{
_head = new Node();
_head->_next = _head;
_head->_prev = _head;
while (first != last)
{
push_back(*first);
++first;
}
}
//lt2(lt1)
list(const list<T>& lt)
{
_head = new Node();
_head->_next = _head;
_head->_prev = _head;
list<T> tmp(lt.begin(), lt.end());
std::swap(_head, tmp._head);
}
//lt2 = lt1
list<T>& operator=(list<T> lt)
{
std::swap(_head, lt._head);
return *this;
}
~list()
{
clear();
delete _head;
_head = nullptr;
}
void clear()
{
iterator it = begin();
while (it != end())
{
erase(it++);
}
}
void push_front(const T& x)
{
insert(begin(), x);
}
void push_back(const T& x)
{
insert(end(), x);
}
void pop_back()
{
erase(--end());
}
void pop_front()
{
erase(begin());
}
//insert,pos不会失效
iterator insert(iterator pos, const T& x)
{
Node* cur = pos._node;
Node* prev = cur->_prev;
Node* newnode = new Node(x);
prev->_next = newnode;
newnode->_prev = prev;
newnode->_next = cur;
cur->_prev = newnode;
return iterator(newnode);
}
//erase,pos一定失效
iterator erase(iterator pos)
{
assert(pos != end());
Node* prev = pos._node->_prev;
Node* next = pos._node->_next;
delete pos._node;
prev->_next = next;
next->_prev = prev;
return iterator(next);
}
private:
Node* _head;
};
void print_list(const list<int>& lt)
{
list<int>::const_iterator it = lt.begin();
while (it != lt.end())
{
cout << *it << " ";
++it;
}
cout << endl;
}
void test_list1()
{
list<int> lt;
lt.push_back(1);
lt.push_back(2);
lt.push_back(3);
lt.push_back(4);
list<int>::iterator it = lt.begin();
while (it != lt.end())
{
*it *= 2;
cout << *it << " ";
++it;
}
cout << endl;
print_list(lt);
}
struct Date
{
int _year;
int _month;
int _day;
Date(int year = 1, int month = 1, int day = 1)
:_year(year)
, _month(month)
, _day(day)
{}
};
void test_list2()
{
list<Date> lt;
lt.push_back(Date(2001, 1, 11));
lt.push_back(Date(2001, 2, 11));
lt.push_back(Date(2001, 3, 11));
list<Date>::iterator it = lt.begin();
while (it != lt.end())
{
cout << (*it)._year << " ";
cout << it->_year << " ";
++it;
}
cout << endl;
}
void test_list3()
{
list<int> lt1;
lt1.push_back(1);
lt1.push_back(2);
lt1.push_back(3);
list<int> lt2(lt1);
for (auto e : lt2)
{
cout << e << " ";
}
cout << endl;
list<int> lt3;
lt3.push_back(10);
lt3.push_back(10);
lt3.push_back(10);
lt3.push_back(10);
lt1 = lt3;
for (auto e : lt1)
{
cout << e << " ";
}
cout << endl;
}
void test_list4()
{
list<Date> lt1(5, Date(2022, 1, 1));
for (auto e : lt1)
{
cout << e._year << " ";
}
cout << endl;
list<int> lt2(5, 1);
for (auto e : lt2)
{
cout << e << " ";
}
cout << endl;
}
void test_list5()
{
list<int> lt1;
lt1.push_back(1);
lt1.push_back(2);
lt1.push_back(3);
lt1.push_back(4);
list<int>::iterator it = lt1.begin();
while (it != lt1.end())
{
cout << *it << " ";
++it;
}
cout << endl;
list<int>::reverse_iterator rit = lt1.rbegin();
while (rit != lt1.rend())
{
cout << *rit << " ";
++rit;
}
cout << endl;
}
}
反向迭代器:
反向迭代器的++就是正向迭代器的--,所以,反向迭代器内部可以包含一个正向迭代器,对正向迭代器的接口进行包装即可。
namespace qwe
{
template<class Iterator, class Ref, class Ptr>
class reverse_iterator
{
typedef reverse_iterator<Iterator, Ref, Ptr>self;
public:
reverse_iterator(Iterator it)
:_it(it)
{}
Ref operator*()
{
Iterator prev = _it;
return *--prev;
}
Ptr operator->()
{
return &operator*();
}
self& operator++()
{
--_it;
return *this;
}
self& operator--()
{
++_it;
return *this;
}
bool operator!=(const self& rit)const
{
return _it != rit._it;
}
private:
Iterator _it;
};
}
list与vector的比较:
vector | list | |
底 层 结 构
|
动态顺序表,一段连续的物理空间
|
带头结点的双向循环链表
|
随机访问 |
支持随机访问,访问某个元素效率O(1)
|
不支持随机访问,访问某个元素
效率O(N)
|
插入和删除 |
任意位置插入和删除效率低,时间复杂 度O(N),插入时有可能需要增容,增容:开辟新空间,拷贝元素,释放旧空间,导致效率更低
|
任意位置插入和删除效率高,时间复杂度为 O(1)
|
空间利用率 |
底层为连续空间,不容易造成内存碎片,空间利用率 高,缓存命中率高
|
底层节点动态开辟,小节点容易
造成内存碎片,空间利用率低,
缓存命中率低
|
迭代器 |
原生指针
|
对节点指针进行封装
|
迭代器失效 |
插入元素有可能会导致重新扩容,致使原来迭代器失效,删除时,如果不考虑缩容,原来迭代器指向的内容改变导致失效
|
插入元素不会导致迭代器失效,
删除元素时,只会导致当前迭代
器失效,其他迭代器不受影响
|
使用场景 |
需要高效存储,支持随机访问,不关心插入删除效率
|
大量插入和删除操作,不关心随
机访问
|