《MySQL45讲》读书笔记

news2024/11/18 10:52:00

重建表

alter table t engine = InnoDB(也就是recreate),而optimize table t 等于recreate+analyze,让表大小变小

重建表的执行流程

  • 建立一个临时文件,扫描表 t 主键的所有数据页;
  • 用数据页中表 t 的记录生成 B+ 树,存储到临时文件中;
  • 生成临时文件的过程中,将所有对 t 的操作记录在一个日志文件(row log)中;
  • 临时文件生成后,将日志文件中的操作应用到临时文件,得到一个逻辑数据上与表 t相同的数据文件;
  • 用临时文件替换表 t 的数据文件。

注意:在重建表的时候, InnoDB不会把整张表占满, 每个页留了1/16给后续的更新用。 也就是说, 其实重建表之后不是“最”紧凑的。

Online DDL

ALTER TABLE tbl_name ADD COLUMN col_name col_type, ALGORITHM=INPLACE, LOCK=NONE;

LOCK选项

  • SHARE:共享锁,执行DDL的表可以读,但是不可以写。
  • NONE:没有任何限制,执行DDL的表可读可写。
  • EXCLUSIVE:排它锁,执行DDL的表不可以读,也不可以写。
  • DEFAULT:默认值,也就是在DDL语句中不指定LOCK子句的时候使用的默认值。如果指定LOCK的值为DEFAULT,那就是交给MySQL子句去觉得锁还是不锁表。不建议使用,如果你确定你的DDL语句不会锁表,你可以不指定lock或者指定它的值为default,否则建议指定它的锁类型。
准备:
1、对表加元数据共享升级锁,并升级为排他锁;(此时DML不能并行)
2、判断使用inplace算法
3、判断语句是“rebuild table” 还是 “no-rebuild”,rebuild 在原表所在的路径下创建.frm和.ibd临时中转文件;
【在引擎层克隆,而不是像copy那样,在server层创建(create like)】

注意:加列的操作是需要rebuild table的
【rebuild table】---生成中转文件表


++++
no-rebuild的情况:
除创建二级索引外只创建.frm文件,其中添加二级索引操作最为特殊,该操作属于no-rebuild不会生成.ibd,
但实际上对.ibd文件却做了修改,该操作会在参数tmpdir指定路径下生成临时文件,用于存储索引排序结果,然后再合并到.ibd文件中
++++
4、申请row log空间,用于存放DDL执行阶段产生的DML操作。(no-rebuild不需要)【在innodb_sort_buffer块中】


执行:(online)
1、释放排他锁,保留元数据共享升级锁;(此时DML可以并行)
2、扫描原表主键以及二级索引的所有数据页,生成 B+ 树,存储到临时文件中;【在引擎层扫描,最耗时】
3、将所有对原表的DML操作记录在日志文件row log中,并回放部分row_log。

提交阶段:
1、升级元数据共享升级锁,产生排他锁锁表;(此时DML不能并行了)
2、重做row log中的内容;(no-rebuild不需要)
3、重命名原表文件,将临时文件改名为原表文件名,删除原表文件;
4、提交事务,变更完成。


在 InnoDB 引擎中 count(*)、count(1)、count(主键)、count(字段) 哪个性能最高?

count(字段)<count(主键 id)<count(1)≈count(*) 题目解析:

  • 对于 count(主键 id) 来说,InnoDB 引擎会遍历整张表,把每一行的 id 值都取出来,返回给 server 层。server 层拿到 id 后,判断是不可能为空的,就按行累加。
  • 对于 count(1) 来说,InnoDB 引擎遍历整张表,但不取值。server 层对于返回的每一行,放一个数字“1”进去,判断是不可能为空的,按行累加。
  • 对于 count(字段) 来说,如果这个“字段”是定义为 not null 的话,一行行地从记录里面读出这个字段,判断不能为 null,按行累加;如果这个“字段”定义允许为 null,那么执行的时候,判断到有可能是 null,还要把值取出来再判断一下,不是 null 才累加。
  • 对于 count(*) 来说,并不会把全部字段取出来,而是专门做了优化,不取值,直接按行累加。

所以最后得出的结果是:count(字段)<count(主键 id)<count(1)≈count(*)。

–single-transaction逻辑备份

当mysqldump使用参数–single-transaction的时候, 导数据之前就会启动一个事务, 来确保拿到一致性视图。

single-transaction方法只适用于所有的表使用事务引擎的库。 如果有的表使用了不支持事务的引擎, 那么备份就只能通过FTWRL(全局锁)方法。

这往往是DBA要求业务开发人员使用InnoDB替代MyISAM的原因之一。

当备库用–single-transaction做逻辑备份的时候, 如果从主库的binlog传来一个DDL语句会怎么样?

Q1:SET SESSION TRANSACTION ISOLATION LEVEL REPEATABLE READ;
Q2:START TRANSACTION WITH CONSISTENT SNAPSHOT;
/* other tables */
Q3:SAVEPOINT sp;
/* 时刻 1 */
Q4:show create table `t1`;
/* 时刻 2 */
Q5:SELECT * FROM `t1`;
/* 时刻 3 */
Q6:ROLLBACK TO SAVEPOINT sp;
/* 时刻 4 */
/* other tables */

1. 如果在Q4语句执行之前到达, 现象: 没有影响, 备份拿到的是DDL后的表结构。

2. 如果在“时刻 2”到达, 则表结构被改过, Q5执行的时候, 报 Table definition has changed,please retrytransaction, 现象: mysqldump终止;

3. 如果在“时刻2”和“时刻3”之间到达, mysqldump占着t1的MDL读锁, binlog被阻塞, 现象:主从延迟, 直到Q6执行完成。

4. 从“时刻4”开始, mysqldump释放了MDL读锁, 现象: 没有影响, 备份拿到的是DDL前的表结构。

删除一个表里面的前10000行数据

要删除一个表里面的前10000行数据, 有以下三种方法可以做到:

第一种, 直接执行delete from Tlimit 10000;

第二种, 在一个连接中循环执行20次 delete from Tlimit 500;

第三种, 在20个连接中同时执行delete from Tlimit 500。

分析:

第一种方式(即: 直接执行delete from Tlimit 10000) 里面, 单个语句占用时间长, 锁的时间也比较长; 而且大事务还会导致主从延迟。

第二种方式是相对较好的。

第三种方式(即: 在20个连接中同时执行delete from Tlimit 500) , 会人为造成锁冲突。

change buffer

当需要更新一个数据页时, 如果数据页在内存中就直接更新, 而如果这个数据页还没有在内存中的话, 在不影响数据一致性的前提下, InooDB会将这些更新操作缓存在change buffer中, 这样就不需要从磁盘中读入这个数据页了。 在下次查询需要访问这个数据页的时候, 将数据页读入内存, 然后执行change buffer中与这个页有关的操作。 通过这种方式就能保证这个数据逻辑的正确性。将change buffer中的操作应用到原数据页, 得到最新结果的过程称为merge。 除了访问这个数据页会触发merge外, 系统有后台线程会定期merge。 在数据库正常关闭(shutdown) 的过程中,也会执行merge操作。对于唯一索引来说, 所有的更新操作都要先判断这个操作是否违反唯一性约束。 比如, 要插入(4,400)这个记录, 就要先判断现在表中是否已经存在k=4的记录, 而这必须要将数据页读入内存才能判断。 如果都已经读入到内存了, 那直接更新内存会更快, 就没必要使用change buffer了。

因此, 唯一索引的更新就不能使用change buffer, 实际上也只有普通索引可以使用。change buffer用的是buffer pool里的内存, 因此不能无限增大。 change buffer的大小, 可以通

过参数innodb_change_buffer_max_size来动态设置。 这个参数设置为50的时候, 表示changebuffer的大小最多只能占用buffer pool的50%。将数据从磁盘读入内存涉及随机IO的访问, 是数据库里面成本最高的操作之一。 change buffer因为减少了随机磁盘访问, 所以对更新性能的提升是会很明显的。

merge的执行流程是这样的:

1. 从磁盘读入数据页到内存(老版本的数据页) ;

2. 从change buffer里找出这个数据页的change buffer 记录(可能有多个) , 依次应用, 得到新版数据页;

3. 写redo log。 这个redo log包含了数据的变更和change buffer的变更。

redo log 主要节省的是随机写磁盘的IO消耗( 转成顺序写) , 而change buffer主要节省的则是随机读磁盘的IO消耗。

字符集不同连表查询用不上索引

performance_schema库优化

MySQL 5.6版本以后提供的performance_schema库, 就在file_summary_by_event_name

表里统计了每次IO请求的时间

Buffer Pool

Buffer Pool对查询的加速效果, 依赖于一个重要的指标, 即: 内存命中率。

你可以在show engine innodb status结果中, 查看一个系统当前的BP命中率。 一般情况下, 一个稳定服务的线上系统, 要保证响应时间符合要求的话, 内存命中率要在99%以上。

执行show engine innodb status , 可以看到“Buffer pool hit rate”字样, 显示的就是当前的命中率。

InnoDB Buffer Pool的大小是由参数 innodb_buffer_pool_size确定的, 一般建议设置成可用物理内存的60%~80%。

所以, innodb_buffer_pool_size小于磁盘的数据量是很常见的。 如果一个 Buffer Pool满了, 而又要从磁盘读入一个数据页, 那肯定是要淘汰一个旧数据页的。

InnoDB管理Buffer Pool的LRU算法, 是用链表来实现的。

1. 在图的状态1里, 链表头部是P1, 表示P1是最近刚刚被访问过的数据页; 假设内存里只能放下这么多数据页;

2. 这时候有一个读请求访问P3, 因此变成状态2, P3被移到最前面;

3. 状态3表示, 这次访问的数据页是不存在于链表中的, 所以需要在Buffer Pool中新申请一个

数据页Px, 加到链表头部。 但是由于内存已经满了, 不能申请新的内存。 于是, 会清空链表

末尾Pm这个数据页的内存, 存入Px的内容, 然后放到链表头部。

4. 从效果上看, 就是最久没有被访问的数据页Pm, 被淘汰了。

实际上, InnoDB对LRU算法做了改进

在InnoDB实现上, 按照5:3的比例把整个LRU链表分成了young区域和old区域。 图中LRU_old指向的就是old区域的第一个位置, 是整个链表的5/8处。 也就是说, 靠近链表头部的5/8是young区域, 靠近链表尾部的3/8是old区域。改进后的LRU算法执行流程变成了下面这样。

1. 图7中状态1, 要访问数据页P3, 由于P3在young区域, 因此和优化前的LRU算法一样, 将其移到链表头部, 变成状态2。

2. 之后要访问一个新的不存在于当前链表的数据页, 这时候依然是淘汰掉数据页Pm, 但是新插入的数据页Px, 是放在LRU_old处。

3. 处于old区域的数据页, 每次被访问的时候都要做下面这个判断:

若这个数据页在LRU链表中存在的时间超过了1秒, 就把它移动到链表头部;

如果这个数据页在LRU链表中存在的时间短于1秒, 位置保持不变。 1秒这个时间, 是由参数innodb_old_blocks_time控制的。 其默认值是1000, 单位毫秒。

MySQL采用的是边算边发的逻辑, 因此对于数据量很大的查询结果来说, 不会在server端保存完整的结果集。 所以, 如果客户端读结果不及时, 会堵住MySQL的查询过程, 但是不会把内

存打爆。而对于InnoDB引擎内部, 由于有淘汰策略, 大查询也不会导致内存暴涨。 并且, 由于InnoDB对LRU算法做了改进, 冷数据的全表扫描, 对Buffer Pool的影响也能做到可控。

InnoDB对Bufffer Pool的LRU算法做了优化,

即: 第一次从磁盘读入内存的数据页, 会先放在old区域。 如果1秒之后这个数据页不再被访问了, 就不会被移动到LRU链表头部, 这样对Buffer Pool的命中率影响就不大。

但是, 如果一个使用BNL算法的join语句(无索引join,参考https://www.cnblogs.com/booksea/p/17380941.html), 多次扫描一个冷表, 而且这个语句执行时间超过1秒,就会在再次扫描冷表的时候, 把冷表的数据页移到LRU链表头部。

这种情况对应的, 是冷表的数据量小于整个Buffer Pool的3/8, 能够完全放入old区域的情况。如果这个冷表很大, 就会出现另外一种情况: 业务正常访问的数据页, 没有机会进入young区

域。由于优化机制的存在, 一个正常访问的数据页, 要进入young区域, 需要隔1秒后再次被访问到。 但是, 由于我们的join语句在循环读磁盘和淘汰内存页, 进入old区域的数据页, 很可能在1秒之内就被淘汰了。 这样, 就会导致这个MySQL实例的Buffer Pool在这段时间内, young区域的数据页没有被合理地淘汰。也就是说, 这两种情况都会影响Buffer Pool的正常运作。

大表join操作虽然对IO有影响, 但是在语句执行结束后, 对IO的影响也就结束了。 但是,对Buffer Pool的影响就是持续性的, 需要依靠后续的查询请求慢慢恢复内存命中率。

判断要不要使用join语句时, 就是看explain结果里面, Extra字段里面有没有出现“BlockNested Loop”字样。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1642583.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

HTML_CSS学习:CSS盒子模型

一、CSS中常用的长度单位 相关代码&#xff1a; <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>CSS中常用的长度单位</title><style>html{font-size: 40px;}#d1{/*第一种长度单位&…

MySQL CRUD进阶

前言&#x1f440;~ 上一章我们介绍了CRUD的一些基础操作&#xff0c;关于如何在表里进行增加记录、查询记录、修改记录以及删除记录的一些基础操作&#xff0c;今天我们学习CRUD&#xff08;增删改查&#xff09;进阶操作 如果各位对文章的内容感兴趣的话&#xff0c;请点点小…

Python设计模式 - 单例模式

定义 单例模式是一种创建型设计模式&#xff0c; 其主要目的是确保一个类只有一个实例&#xff0c; 并提供一个全局访问点来访问该实例。 结构 应用场景 资源管理&#xff1a;当需要共享某个资源时&#xff0c;例如数据库连接、线程池、日志对象等&#xff0c;可以使用单例模…

OpenCV(六) —— Android 下的人脸识别

本篇我们来介绍在 Android 下如何实现人脸识别。 上一篇我们介绍了如何在 Windows 下通过 OpenCV 实现人脸识别&#xff0c;实际上&#xff0c;在 Android 下的实现的核心原理是非常相似的&#xff0c;因为 OpenCV 部分的代码改动不大&#xff0c;绝大部分代码可以直接移植到 …

银行ETL-监管报送

1104报表 1104报表主要包括&#xff1a;资产负债&#xff0c;表外业务、流动性风险、贷款质量、投向行业和地区、重点客户等。 1104报表分类 普通报表、机构特色类报表。 反洗钱 大额交易、可疑交易。标签分类&#xff1a;疑似犯罪、疑似毒品、疑似传销。 反洗钱—接口报…

正点原子[第二期]Linux之ARM(MX6U)裸机篇学习笔记-11.1,11.2-BSP文件目录组织

前言&#xff1a; 本文是根据哔哩哔哩网站上“正点原子[第二期]Linux之ARM&#xff08;MX6U&#xff09;裸机篇”视频的学习笔记&#xff0c;在这里会记录下正点原子 I.MX6ULL 开发板的配套视频教程所作的实验和学习笔记内容。本文大量引用了正点原子教学视频和链接中的内容。…

【PowerJob】从源码编译到k8s部署

前言 虽然PowerJob官方说支持JPA各种数据源&#xff0c;但在PG数据库的兼容性上&#xff0c;确实存在小问题&#xff0c;issue也有相关原理描述&#xff0c;官方采用的优雅方式并未真正解决问题&#xff0c;因为只解决了从Lob字段读取的时候&#xff0c;自动建表的时候还是会生…

手机恢复出厂设置ip地址会变吗

当我们对手机进行恢复出厂设置时&#xff0c;很多人会担心手机的IP地址是否会发生变化。IP地址对于手机的网络连接至关重要&#xff0c;它决定了手机在网络中的身份和位置。那么&#xff0c;手机恢复出厂设置后&#xff0c;IP地址到底会不会发生变化呢&#xff1f;虎观代理小二…

OneFlow深度学习框原理、用法、案例和注意事项

本文将基于OneFlow深度学习框架&#xff0c;详细介绍其原理、用法、案例和注意事项。OneFlow是由中科院计算所自动化研究所推出的深度学习框架&#xff0c;专注于高效、易用和扩展性强。它提供了一种类似于深度学习库的接口&#xff0c;可以用于构建神经网络模型&#xff0c;并…

CMakeLists.txt语法规则:部分常用命令说明四

一. 简介 前面几篇文章学习了CMakeLists.txt语法中前面几篇文章学习了CMakeLists.txt语法中部分常用命令。文章如下&#xff1a; CMakeLists.txt语法规则&#xff1a;部分常用命令说明一-CSDN博客 CMakeLists.txt语法规则&#xff1a;部分常用命令说明二-CSDN博客 CMakeLi…

mac nvm install node<version> error 404

mac m2芯片遇到的问题&#xff0c;估计m系列的应该也有这个问题&#xff0c;在这里记录一下 解决方案&#xff1a; ## 需要先处理一下兼容就OK了arch -x86_64 zsh nvm install returns curl: (22) The requested URL returned error: 404 Issue #2667 nvm-sh/nvm GitHub

平平科技工作室-Python-猜数字游戏

一.代码展示 import random print(__猜数字游戏__) print(由平平科技工作室制作) print(游戏规则:1至10随机数随便猜) print (三次没猜对游戏结束) numrandom.randint (1,10) for i in range(3):aint(input(输入你想要猜测的数字))if a>num:print (数字猜的有点大了)elif a…

Three.js的摄像机

什么是摄像机 一般情况下&#xff0c;显示屏是二维的&#xff0c;如何把三维的场景显示到屏幕上呢&#xff1f;摄像机就是这样的一个抽象&#xff0c;它定义了三维空间到二维屏幕上的投影方式。 根据投影方法的不同&#xff0c;摄像机又分为正交投影照相机和透视投影摄像机。…

未发表!QRCNN-BiGRU-MultiAttention实现区间预测!轻松发顶刊!区间预测全家桶再更新!

声明&#xff1a;文章是从本人公众号中复制而来&#xff0c;因此&#xff0c;想最新最快了解各类智能优化算法及其改进的朋友&#xff0c;可关注我的公众号&#xff1a;强盛机器学习&#xff0c;不定期会有很多免费代码分享~ 目录 结果展示 数据介绍 原理讲解与流程 1.CN…

IOS 开发 - block 使用详解

1.Blobk的定义 block的写法相对难记,不必司机应被,只需要在xcode里打出"inlineBlock"--回车, 系统会自动帮你把基础版写法给你匹配出来 //Block的基础声明//等号""之前是blobk的声明,等号“”后面是block的实现/*returnType:返回类型(void、int、String *…

设计模式——行为型模式——策略模式

策略模式 定义 策略模式定义了一系列算法&#xff0c;并将每个算法封装起来&#xff0c;使它们可以相互替换&#xff0c;且算法的变化不会影响使用算法的客户。 策略模式属于对象行为模式&#xff0c;它通过对算法进行封装&#xff0c;把使用算法的责任和算法的实现分割开来&a…

ThreeJS:常见几何体与基础材质入门

在前文《ThreeJS:Geometry与顶点|索引|面》中&#xff0c;我们了解了与Geometry几何体相关的基础概念&#xff0c;也尝试了如何通过BufferGeometry自定义几何体。 常见Geometry几何体 ThreeJS内部也提供了诸多封装好的几何体&#xff0c;常见的Geometry几何体如下图所示&#…

Java | Leetcode Java题解之第67题二进制求和

题目&#xff1a; 题解&#xff1a; class Solution {public String addBinary(String a, String b) {StringBuffer ans new StringBuffer();int n Math.max(a.length(), b.length()), carry 0;for (int i 0; i < n; i) {carry i < a.length() ? (a.charAt(a.leng…

【平衡二叉树】AVL树(右单旋和左单旋的情况)

&#x1f389;博主首页&#xff1a; 有趣的中国人 &#x1f389;专栏首页&#xff1a; C进阶 &#x1f389;其它专栏&#xff1a; C初阶 | 初阶数据结构 | Linux 文章目录 1. AVL树的定义2. C实现AVL树2.1 插入——左左型的右旋2.2 插入——右右型的左旋 3. 总结 1. AVL树的定…

本地部署大模型ollama+docker+open WebUI/Lobe Chat

文章目录 大模型工具Ollama下载安装运行Spring Ai 代码测试加依赖配置写代码 ollama的web&Desktop搭建部署Open WebUI有两种方式Docker DesktopDocker部署Open WebUIDocker部署Lobe Chat可以配置OpenAI的key也可以配置ollama 大模型的选择 本篇基于windows环境下配置 大模型…