Python数据分析案例44——基于模态分解和深度学习的电负荷量预测(VMD+BiGRU+注意力)

news2024/12/29 10:12:24

案例背景

承接之前的案例,说要做模态分解加神经网络的模型的,前面纯神经网络的缝合模型参考数据分析案例41和数据分析案例42。

虽然我自己基于各种循环神经网络做时间序列的预测已经做烂了.....但是还是会有很多刚读研究生或者是别的领域过来的小白来问这些神经网络怎么写,怎么搭建。

什么CNN-LSTM, CNN-GRU, LSTM-GRU, 注意力机制+LSTM, 注意力机制+GRU, 模态分解+LSTM, 优化算法+模态分解+LSTM.........优化算法+模态分解+注意力机制+GRU,优化算法+模态分解+注意力机制+双向GRU。。。

算了,虽然他们确实没啥意义,但是毕业需要,做学术嘛,都懂的。都是学术裁缝。

别的不多说,模态分解我知道会用的就有5种(EMD,EEMD,CEEMDAN,VMD,SVMD),优化算法不计其数(PSO,SSA,SMR,CS,SMA,GA,SWO....等等各种动物园优化算法),然后再加上可能用上的神经网络(LSTM,GRU,CNN,BiLSTM,BiGRU),再加上注意力机制。简单来说,我可以组合出5*10*5*2=500种模型!!! , 而且我还没用上Transformer以及其他更高级的深度学习模块,还有不同的损失函数,梯度下降的方法,还有区间估计核密度估计等等,毫不夸张的说,就这种缝合模型,我可以组合上千种。够发一辈子的论文了。

我今天就演示一下学术裁缝,模态分解+神经网络的模块的排列组合,究极缝合。

神经网络我基本主流模型都会写上的,本文会用如下的神经网络模型:

['LSTM', 'GRU', 'CNN', 'MLP', 'CNN+LSTM', 'BiLSTM', 'Attention','BiGRU+Attention', 'MultiHeadAttention']

模态分解就用目前效果还可以,论文里面的常用的VMD,变分模态分解吧。


数据选取

做这个循环神经网络的数据很好找,时间序列都可以,例如天气 , 空气质量AQI,血糖浓度,交通流量,锂电池寿命(参考我的数据分析案例24),风电预测(参考我的数据分析案例25),太阳黑子,人口数量,经济GDP,冶金温度,商品销量........

再加上我前面说的上千种缝合模型,去用于这些不同的领域,可以写的论文3辈子都发不完......

我这里就用elia的风电的数据吧,这数据我发了几篇sci了.....官网上很好找,使用的是2024年1月的数据,15分钟一个点。

本次案例的全部代码文件和数据集获取可以参考:(模态分解系列演示)

需要定制各种缝合模块的代码的也可以私聊我。


代码实现

神经网络使用的还是小白最容易上手的Keras框架,pytorch现在好像也支持Keras了。

模态分解就用的是vmdpy,其他的emd,eemd,ceemdan这几个系列的模态分解都是pyemd这个包,网上都有教程的。想换成这几个模态分解也很简单。

导入包:

import os
import math
import datetime
import random as rn
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
plt.rcParams ['font.sans-serif'] ='SimHei'               #显示中文
plt.rcParams ['axes.unicode_minus']=False               #显示负号

from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import mean_squared_error

import tensorflow as tf
import keras
from keras.models import Model, Sequential
from keras.layers import Dense,Input, Dropout, Embedding, Flatten,MaxPooling1D,Conv1D,SimpleRNN,LSTM,GRU,Multiply,GlobalMaxPooling1D
from keras.layers import Bidirectional,Activation,BatchNormalization,GlobalAveragePooling1D
from keras.layers.merge import concatenate
from keras.callbacks import EarlyStopping
#from tensorflow.keras import regularizers
#from keras.utils.np_utils import to_categorical
from tensorflow.keras  import optimizers

from vmdpy import VMD  
from scipy.fftpack import fft

读取数据:

f= pd.DataFrame(pd.read_excel("WindForecast_20240101-20240228.xls").set_index('DateTime').iloc[:1440,-1].rename_axis('Time/(15 min)'))

data=np.array(f).reshape(-1,1)
print(data.shape)

只取了1440个点,没弄很多,因为深度学习计算量很大 太费时间了,我这5年前的小游戏本跑不动.....

画个图看看:

f.plot(figsize=(14,4))


                        

 波动性很大,这种序列数据的特点都是这样。


VMD模态分解

vmd是比emd系列复杂一点的模态分解,它的参数特别多:

alpha = 7000      # moderate bandwidth constraint  
tau = 0.            # noise-tolerance (no strict fidelity enforcement)  
K = 4             # 3 modes  
DC = 0             # no DC part imposed  
init = 1           # initialize omegas uniformly  
tol = 1e-7  
##### alpha、tau、K、DC、init、tol 六个输入参数的无严格要求; 
#alpha 带宽限制 经验取值为 抽样点长度 1.5-2.0 倍; 
#tau 噪声容限 ;
#K 分解模态(IMF)个数; 
#DC 合成信号若无常量,取值为 0;若含常量,则其取值为 1; 
#init 初始化 w 值,当初始化为 1 时,均匀分布产生的随机数; 
#tol 控制误差大小常量,决定精度与迭代次数

大家可以自己查一下参数的含义,我这里对分解的参数没什么要求,我随便选的一些。就是K是模态分解的数量,我这里K=4,因为我只想分解4条,太多了训练时间又要增加太麻烦了.....

分解:

然后画个图看看:

u, u_hat, omega = VMD(f.values, alpha, tau, K, DC, init, tol)  
plt.figure()
plt.plot(u.T)
plt.title('VMD分解出的 Decomposed modes')
plt.show()

不太好看,因为分解出来的数据口径不是一样的,这样模态小的被挤成一条线了,下面分开画图看看:
 

for i in range(K):
    plt.figure(figsize=(8,5), dpi=128)
    plt.subplot(K,1,i+1)
    plt.plot(u[i,:], linewidth=0.2, c='r')
    plt.ylabel('IMF{}'.format(i+1)) 

VMD还有什么中心模态,也画出来看看:

# 中心模态
for i in range(K):
    plt.figure(figsize=(8,5), dpi=128)
    plt.subplot(K,1,i+1)
    plt.plot(abs(fft(u[i,:])))
    plt.ylabel('IMF{}'.format(i+1))

 

将这4个模态分入一个数据框:

df=pd.DataFrame()
for i  in range(K):
    a = u[i,:]
    dataframe = pd.DataFrame({'v{}'.format(i+1):a})
    df['imf'+str(i+1)]=dataframe

查看:

df

原数据1440的长度,现在变成了4条1440的序列,模态分解的功能就是这样的。

df_names=df.columns
df_names

名称就是imf1到imf4,我们下面神经网络就是对这四条序列分开进行神经网络的预测和拟合,然后加起来就是最终的预测效果了。


神经网络

不过由于我们的神经网络模型种类很丰富(['LSTM', 'GRU', 'CNN', 'MLP', 'CNN+LSTM', 'BiLSTM', 'Attention', 'BiGRU+Attention', 'MultiHeadAttention']),所以进行神经网络之间,我们还需要自定义好很多层:

#from __future__ import print_function
from keras import backend as K
from keras.layers import Layer
 
class Embedding(Layer):
    def __init__(self, vocab_size, model_dim, **kwargs):
        self._vocab_size = vocab_size
        self._model_dim = model_dim
        super(Embedding, self).__init__(**kwargs)

    def build(self, input_shape):
        self.embeddings = self.add_weight(
            shape=(self._vocab_size, self._model_dim),
            initializer='glorot_uniform',
            name="embeddings")
        super(Embedding, self).build(input_shape)

    def call(self, inputs):
        if K.dtype(inputs) != 'int32':
            inputs = K.cast(inputs, 'int32')
        embeddings = K.gather(self.embeddings, inputs)
        embeddings *= self._model_dim ** 0.5 # Scale
        return embeddings

    def compute_output_shape(self, input_shape):
        return input_shape + (self._model_dim,)
    
class PositionEncoding(Layer):
    def __init__(self, model_dim, **kwargs):
        self._model_dim = model_dim
        super(PositionEncoding, self).__init__(**kwargs)

    def call(self, inputs):
        seq_length = inputs.shape[1]
        position_encodings = np.zeros((seq_length, self._model_dim))
        for pos in range(seq_length):
            for i in range(self._model_dim):
                position_encodings[pos, i] = pos / np.power(10000, (i-i%2) / self._model_dim)
        position_encodings[:, 0::2] = np.sin(position_encodings[:, 0::2]) # 2i
        position_encodings[:, 1::2] = np.cos(position_encodings[:, 1::2]) # 2i+1
        position_encodings = K.cast(position_encodings, 'float32')
        return position_encodings

    def compute_output_shape(self, input_shape):
        return input_shape
class Add(Layer):
    def __init__(self, **kwargs):
        super(Add, self).__init__(**kwargs)

    def call(self, inputs):
        input_a, input_b = inputs
        return input_a + input_b

    def compute_output_shape(self, input_shape):
        return input_shape[0]
    
class ScaledDotProductAttention(Layer):
    def __init__(self, masking=True, future=False, dropout_rate=0., **kwargs):
        self._masking = masking
        self._future = future
        self._dropout_rate = dropout_rate
        self._masking_num = -2**32+1
        super(ScaledDotProductAttention, self).__init__(**kwargs)

    def mask(self, inputs, masks):
        masks = K.cast(masks, 'float32')
        masks = K.tile(masks, [K.shape(inputs)[0] // K.shape(masks)[0], 1])
        masks = K.expand_dims(masks, 1)
        outputs = inputs + masks * self._masking_num
        return outputs
    
    def future_mask(self, inputs):
        diag_vals = tf.ones_like(inputs[0, :, :])
        tril = tf.linalg.LinearOperatorLowerTriangular(diag_vals).to_dense()  
        future_masks = tf.tile(tf.expand_dims(tril, 0), [tf.shape(inputs)[0], 1, 1])
        paddings = tf.ones_like(future_masks) * self._masking_num
        outputs = tf.where(tf.equal(future_masks, 0), paddings, inputs)
        return outputs

    def call(self, inputs):
        if self._masking:
            assert len(inputs) == 4, "inputs should be set [queries, keys, values, masks]."
            queries, keys, values, masks = inputs
        else:
            assert len(inputs) == 3, "inputs should be set [queries, keys, values]."
            queries, keys, values = inputs

        if K.dtype(queries) != 'float32':  queries = K.cast(queries, 'float32')
        if K.dtype(keys) != 'float32':  keys = K.cast(keys, 'float32')
        if K.dtype(values) != 'float32':  values = K.cast(values, 'float32')

        matmul = K.batch_dot(queries, tf.transpose(keys, [0, 2, 1])) # MatMul
        scaled_matmul = matmul / int(queries.shape[-1]) ** 0.5  # Scale
        if self._masking:
            scaled_matmul = self.mask(scaled_matmul, masks) # Mask(opt.)

        if self._future:
            scaled_matmul = self.future_mask(scaled_matmul)

        softmax_out = K.softmax(scaled_matmul) # SoftMax
        # Dropout
        out = K.dropout(softmax_out, self._dropout_rate)
        outputs = K.batch_dot(out, values)
        return outputs

    def compute_output_shape(self, input_shape):
        return input_shape
    
class MultiHeadAttention(Layer):

    def __init__(self, n_heads, head_dim, dropout_rate=.1, masking=True, future=False, trainable=True, **kwargs):
        self._n_heads = n_heads
        self._head_dim = head_dim
        self._dropout_rate = dropout_rate
        self._masking = masking
        self._future = future
        self._trainable = trainable
        super(MultiHeadAttention, self).__init__(**kwargs)

    def build(self, input_shape):
        self._weights_queries = self.add_weight(
            shape=(input_shape[0][-1], self._n_heads * self._head_dim),
            initializer='glorot_uniform',
            trainable=self._trainable,
            name='weights_queries')
        self._weights_keys = self.add_weight(
            shape=(input_shape[1][-1], self._n_heads * self._head_dim),
            initializer='glorot_uniform',
            trainable=self._trainable,
            name='weights_keys')
        self._weights_values = self.add_weight(
            shape=(input_shape[2][-1], self._n_heads * self._head_dim),
            initializer='glorot_uniform',
            trainable=self._trainable,
            name='weights_values')
        super(MultiHeadAttention, self).build(input_shape)

    def call(self, inputs):
        if self._masking:
            assert len(inputs) == 4, "inputs should be set [queries, keys, values, masks]."
            queries, keys, values, masks = inputs
        else:
            assert len(inputs) == 3, "inputs should be set [queries, keys, values]."
            queries, keys, values = inputs
        
        queries_linear = K.dot(queries, self._weights_queries) 
        keys_linear = K.dot(keys, self._weights_keys)
        values_linear = K.dot(values, self._weights_values)

        queries_multi_heads = tf.concat(tf.split(queries_linear, self._n_heads, axis=2), axis=0)
        keys_multi_heads = tf.concat(tf.split(keys_linear, self._n_heads, axis=2), axis=0)
        values_multi_heads = tf.concat(tf.split(values_linear, self._n_heads, axis=2), axis=0)
        
        if self._masking:
            att_inputs = [queries_multi_heads, keys_multi_heads, values_multi_heads, masks]
        else:
            att_inputs = [queries_multi_heads, keys_multi_heads, values_multi_heads]
            
        attention = ScaledDotProductAttention(
            masking=self._masking, future=self._future, dropout_rate=self._dropout_rate)
        att_out = attention(att_inputs)

        outputs = tf.concat(tf.split(att_out, self._n_heads, axis=0), axis=2)
        
        return outputs

    def compute_output_shape(self, input_shape):
        return input_shape

固定随机数种子,定义评价函数:

def set_my_seed():
    os.environ['PYTHONHASHSEED'] = '0'
    np.random.seed(1)
    rn.seed(12345)
    tf.random.set_seed(123)
    
def evaluation(y_test, y_predict):
    mae = mean_absolute_error(y_test, y_predict)
    mse = mean_squared_error(y_test, y_predict)
    rmse = math.sqrt(mean_squared_error(y_test, y_predict))
    mape=(abs(y_predict -y_test)/ y_test).mean()
    return mae, rmse, mape

构建训练集和测试集的函数:

def build_sequences(text, window_size=24):
    #text:list of capacity
    x, y = [],[]
    for i in range(len(text) - window_size):
        sequence = text[i:i+window_size]
        target = text[i+window_size]
        x.append(sequence)
        y.append(target)
    return np.array(x), np.array(y)
def get_traintest(data,train_size=len(df),window_size=24):
    train=data[:train_size]
    test=data[train_size-window_size:]
    X_train,y_train=build_sequences(train,window_size=window_size)
    X_test,y_test=build_sequences(test,window_size=window_size)
    return X_train,y_train,X_test,y_test

 下面自定义好,我们所有的模型(['LSTM', 'GRU', 'CNN', 'MLP', 'CNN+LSTM', 'BiLSTM', 'Attention', 'BiGRU+Attention', 'MultiHeadAttention']),还有训练时画图的观察用的函数和评估函数。

def build_model(X_train,mode='LSTM',hidden_dim=[32,16]):
    set_my_seed()
    if mode=='RNN':
        #RNN
        model = Sequential()
        model.add(SimpleRNN(hidden_dim[0],return_sequences=True, input_shape=(X_train.shape[-2],X_train.shape[-1])))
        model.add(SimpleRNN(hidden_dim[1]))  
        model.add(Dense(1))
    elif mode=='MLP':
        model = Sequential()
        model.add(Dense(hidden_dim[0],activation='relu',input_shape=(X_train.shape[-1],)))
        model.add(Dense(hidden_dim[1],activation='relu'))
        model.add(Dense(1))
    elif mode=='LSTM':
        # LSTM
        model = Sequential()
        model.add(LSTM(hidden_dim[0],return_sequences=True, input_shape=(X_train.shape[-2],X_train.shape[-1])))
        model.add(LSTM(hidden_dim[1]))
        model.add(Dense(1))
    elif mode=='GRU':
        #GRU
        model = Sequential()
        model.add(GRU(hidden_dim[0],return_sequences=True, input_shape=(X_train.shape[-2],X_train.shape[-1])))
        model.add(GRU(hidden_dim[1]))
        model.add(Dense(1))
    elif mode=='CNN':
        #一维卷积
        model = Sequential()
        model.add(Conv1D(hidden_dim[0],17,activation='relu',input_shape=(X_train.shape[-2],X_train.shape[-1])))
        model.add(GlobalAveragePooling1D())
        model.add(Flatten())
        model.add(Dense(hidden_dim[1],activation='relu'))
        model.add(Dense(1))
    elif mode=='CNN+LSTM': 
        model = Sequential()
        model.add(Conv1D(filters=hidden_dim[0], kernel_size=3, padding="same",activation="relu"))
        model.add(MaxPooling1D(pool_size=2))
        model.add(LSTM(hidden_dim[1]))
        model.add(Dense(1))
    elif mode=='BiLSTM':
        model = Sequential()
        model.add(Bidirectional(LSTM(hidden_dim[0],return_sequences=True, input_shape=(X_train.shape[-2],X_train.shape[-1]))))
        model.add(Bidirectional(LSTM(hidden_dim[1])))
        model.add(Dense(1))
        
    elif mode=='Attention':
        inputs = Input(name='inputs',shape=[X_train.shape[-2],X_train.shape[-1]], dtype='float32')
        attention_probs = Dense(hidden_dim[0], activation='softmax', name='attention_vec')(inputs)
        attention_mul =  Multiply()([inputs, attention_probs])
        mlp = Dense(hidden_dim[1])(attention_mul) #原始的全连接
        fla=Flatten()(mlp)
        output = Dense(1)(fla)
        model = Model(inputs=[inputs], outputs=output)  
    
    elif mode=='BiGRU+Attention':
        inputs = Input(name='inputs',shape=[X_train.shape[-2],X_train.shape[-1]], dtype='float64')
        attention_probs = Dense(32, activation='softmax', name='attention_vec')(inputs)
        attention_mul =  Multiply()([inputs, attention_probs])
        mlp = Dense(64)(attention_mul) #原始的全连接
        gru=Bidirectional(GRU(32))(mlp)
        mlp = Dense(16,activation='relu')(gru)
        output = Dense(1)(mlp)
        model = Model(inputs=[inputs], outputs=output)

    elif mode=='MultiHeadAttention':         
        inputs = Input(shape=[X_train.shape[-2],X_train.shape[-1]], name="inputs")
        #masks = Input(shape=(X_train.shape[-2],), name='masks')
        encodings = PositionEncoding(X_train.shape[-2])(inputs)
        encodings = Add()([inputs, encodings])
        x = MultiHeadAttention(8, hidden_dim[0],masking=False)([encodings, encodings, encodings])
        x = GlobalAveragePooling1D()(x)
        x = Dropout(0.2)(x)
        x = Dense(hidden_dim[1], activation='relu')(x)
        outputs = Dense(1)(x)
        model = Model(inputs=[inputs], outputs=outputs)
                  
    model.compile(optimizer='Adam', loss='mse',metrics=[tf.keras.metrics.RootMeanSquaredError(),"mape","mae"])
    return model
                                      
def plot_loss(hist,imfname):
    plt.subplots(1,4,figsize=(16,2))
    for i,key in enumerate(hist.history.keys()):
        n=int(str('14')+str(i+1))
        plt.subplot(n)
        plt.plot(hist.history[key], 'k', label=f'Training {key}')
        plt.title(f'{imfname} Training {key}')
        plt.xlabel('Epochs')
        plt.ylabel(key)
        plt.legend()
    plt.tight_layout()
    plt.show()
    
def evaluation_all(df_eval_all,mode,show_fit=True):
    df_eval_all['all_pred']=df_eval_all.iloc[:,1:].sum(axis=1)

    MAE2,RMSE2,MAPE2=evaluation(df_eval_all['actual'],df_eval_all['all_pred'])
    df_eval_all.rename(columns={'all_pred':'predict'},inplace=True)
    if show_fit:
        df_eval_all.loc[:,['predict','actual']].plot(figsize=(12,4),title=f'VMD+{mode}的拟合效果')
        
    print('总体预测效果:')
    print(f'VMD+{mode}的效果为mae:{MAE2}, rmse:{RMSE2} ,mape:{MAPE2}')
    df_allmodel[mode]=df_eval_all['predict'].to_numpy()

准备一个空数据框,存放预测的结果:

df_allmodel=pd.DataFrame()

然后自定义训练函数,我的训练函数会遍历每个模态,然后对每个模态进行划分训练集和测试集,,归一化,然后训练模型,预测,再逆归一化回去,把所有模态的预测结果相加得到最终的预测结果,然后计算评价指标打印出来,等等,其中还会对模型的训练过程中的损失变化画图。

def train_fuc(mode='LSTM',train_rat=0.8,window_size=24,batch_size=32,epochs=100,hidden_dim=[32,16],show_imf=True,show_loss=True,show_fit=True):
    df_all=df.copy()
    train_size=int(len(df_all)*train_rat)
    df_eval_all=pd.DataFrame(f.values[train_size:],columns=['actual'])
    for i,name in  enumerate(df_names):
        print(f'正在训练第:{name}条分量')
        data=df_all[name]
        X_train,y_train,X_test,y_test=get_traintest(data.values,window_size=window_size,train_size=train_size)
        #归一化
        scaler = MinMaxScaler() 
        scaler = scaler.fit(X_train) 
        X_train = scaler.transform(X_train)  
        X_test = scaler.transform(X_test)
        
        scaler_y = MinMaxScaler() 
        scaler_y = scaler_y.fit(y_train.reshape(-1,1)) 
        y_train = scaler_y.transform(y_train.reshape(-1,1))
        
        if mode!='MLP':
            X_train = X_train.reshape((X_train.shape[0], X_train.shape[1], 1))
            X_test = X_test.reshape((X_test.shape[0], X_test.shape[1], 1))
        print(X_train.shape, y_train.shape, X_test.shape,y_test.shape)
        set_my_seed()
        model=build_model(X_train=X_train,mode=mode,hidden_dim=hidden_dim)
        start = datetime.datetime.now()
        hist=model.fit(X_train, y_train,batch_size=batch_size,epochs=epochs,verbose=0)
        if show_loss:
            plot_loss(hist,name)
        #预测
        y_pred = model.predict(X_test)
        y_pred =scaler_y.inverse_transform(y_pred)
        #print(y_pred.shape)
        end = datetime.datetime.now()
        if show_imf:
            df_eval=pd.DataFrame()
            df_eval['actual']=y_test
            df_eval['pred']=y_pred
            df_eval.plot(figsize=(7,3))
            plt.show()
        mae, rmse, mape=evaluation(y_test=y_test, y_predict=y_pred)
        time=end-start
        df_eval_all[name+'_pred']=y_pred
        print(f'running time is {time}')
        print(f'{name} 该条分量的效果:mae:{mae}, rmse:{rmse} ,mape:{mape}')
        print('============================================================================================================================')
    
    evaluation_all(df_eval_all,mode=mode,show_fit=True)

初始化超参数:

window_size=48  #滑动窗口大小
train_rat=0.8   #训练集比例
batch_size=32   #批量大小
epochs=50       #训练轮数
hidden_dim=[32,16]  #隐藏层神经元个数
show_fit=True
show_loss=True
mode='LSTM'  #RNN,GRU,CNN

可能有小伙伴看到这里已经晕了,这些函数都是我自己写的,但是我使用的时候也不会去仔细看的,因为每个函数的功能都很清楚。我封装得很好,所以使用起来就很简单,例如下面开始训练lstm的模型:


LSTM预测

mode='LSTM' 
set_my_seed()
train_fuc(mode=mode,window_size=window_size,train_rat=train_rat,batch_size=batch_size,epochs=epochs,hidden_dim=hidden_dim)

就这么一行代码就行,就能得到如下所有的训练效果图:

四条小模态的单独的预测效果,拟合图,评价指标,还有全部加一起的总的的效果图,评价指标都打印出来了,就一行代码,很简单。

这里的lstm在这些默认的参数情况下的最终预测效果是:

mae:63.6764175025622, rmse:86.68976515618272 ,mape:0.228000752359303

如果想修改参数的话,就在这个函数里面改就行,很便捷,我还是对lstm进行训练:

#改变滑动窗口大小等参数
set_my_seed()
train_fuc(mode=mode,window_size=96,train_rat=train_rat,batch_size=15,epochs=60,hidden_dim=[64,32])

图太长我就不截完了,我们看看最终的效果: 

可以看到评价指标是:

mae:59.25879243718254, rmse:79.92821805096699 ,mape:0.20615518

比起上面的默认参数的lstm,误差变小了,效果是好了一点点的。

大家可以自己调试,修改参数,去获取更好的预测效果:

## 还可以自己多试试别的参数
train_fuc(mode='LSTM',window_size=window_size,train_rat=train_rat,batch_size=16,epochs=80,hidden_dim=[64,32])

 这里就截图不展示了。


 GRU预测

想使用不同的模型也很简单,就修改mode参数,例如这里使用gru进行预测:

set_my_seed()
train_fuc(mode='GRU',window_size=window_size,train_rat=train_rat,batch_size=batch_size,epochs=epochs,hidden_dim=hidden_dim)

GRU的效果也还不错:

总体预测效果:
VMD+LSTM的效果为mae:59.25879243718254, rmse:79.92821805096699 ,mape:0.20615518445171077

 RNN预测

然后是RNN:

set_my_seed()
train_fuc(mode='RNN',window_size=window_size,train_rat=train_rat,batch_size=batch_size,epochs=epochs,hidden_dim=hidden_dim)

不展示了


一维CNN预测 

我每次训练之间都加上:set_my_seed()这个函数是为了固定随机数种子,让模型能复现。
(深度学习就是这么玄学,就算你所有参数都一样,设备也一样,跑出来的效果可能也是有差异的.....)

set_my_seed()
train_fuc(mode='CNN',window_size=window_size,train_rat=train_rat,batch_size=batch_size,epochs=epochs,hidden_dim=hidden_dim)

截个小图看看最终预测效果吧:

VMD+CNN的效果为mae:120.55432003868948, rmse:149.99661035695433 ,mape:1.1896740203851466

误差比lstm大了一倍多,不太行。。。

(ps:根据我的检验,一维cnn只能用于滑动窗口很小的时间序列预测,低于16以下的吧,我这里的滑动窗口是48,所以CNN效果肯定不好。)

(还有的同学会问,“那我二维CNN呢?”  , 我只能说多读点书.......,CNN最初就是二维的,但是人家是用于四维的图片数据,你时间序列的三维数据和二维的表格数据用不了。。。)


MLP预测

模型对比当然不能少了最经典的mlp,其实所谓的全连接层,密集层,线性层,多层感知机,还有外行说的bp神经网络,其实都是mlp。是最简单的神经网络结构了。

set_my_seed()
train_fuc(mode='MLP',window_size=window_size,train_rat=train_rat,batch_size=batch_size,epochs=epochs,hidden_dim=hidden_dim)

效果一般般,我后面都会一起比较的。


CNN+LSTM

set_my_seed()
train_fuc(mode='CNN+LSTM',window_size=window_size,train_rat=train_rat,batch_size=batch_size,epochs=epochs,hidden_dim=hidden_dim)

 

 效果还可以吧,但是比不过lstm。我其实最讨厌cnn+lstm这种缝合了,完全没意义,对于时间序列这种数据没得任何的逻辑和对预测的帮助,为了创新而创新。。其实都被做烂了,而且效果也一般不会更好。


BiLSTM

set_my_seed()
train_fuc(mode='BiLSTM',window_size=window_size,train_rat=train_rat,batch_size=batch_size,epochs=epochs,hidden_dim=hidden_dim)

效果一般般


Attention

纯注意力机制

set_my_seed()
train_fuc(mode='Attention',window_size=window_size,train_rat=train_rat,batch_size=batch_size,epochs=epochs,hidden_dim=hidden_dim)

一般


BiGRU+Attention

set_my_seed()
train_fuc(mode='BiGRU+Attention',window_size=window_size,train_rat=train_rat,batch_size=batch_size,epochs=epochs,hidden_dim=hidden_dim)

不展示了,下面统一对比 


MultiHeadAttention

set_my_seed()
#多头注意力,默认用了8个头
train_fuc(mode='MultiHeadAttention',window_size=window_size,train_rat=train_rat,batch_size=batch_size,epochs=epochs,hidden_dim=hidden_dim)

不展示了,下面统一对比 


评价指标

查看每个模型预测的结果:

df_allmodel

 1440的20%是288个点,然后还是9个模型,没问题。

我们取出真实值的测试集部分的数据:

y_actual=data[-len(df_allmodel):,:].reshape(-1,)

定义另外的评价指标计算函数,计算['MSE','RMSE','MAE','MAPE'],这四个都是回归问题常用的评价指标。

def evaluation2(y_test, y_predict):
    mae = mean_absolute_error(y_test, y_predict)
    mse = mean_squared_error(y_test, y_predict)
    rmse = np.sqrt(mean_squared_error(y_test, y_predict))
    mape=(abs(y_predict -y_test)/ y_test).mean()
    #r_2=r2_score(y_test, y_predict)
    return mse, rmse, mae, mape #r_2
df_eval_all=pd.DataFrame(columns=['MSE','RMSE','MAE','MAPE'])

计算每个模型的预测结果和真实值之间的评价指标:

for col in df_allmodel:
    s=list(evaluation2(y_actual,df_allmodel[col].to_numpy()))
    df_eval_all.loc[f'{col}',:]=s
df_eval_all

看数字不直观,画个柱状图:
 

bar_width = 0.4
colors=['c', 'b', 'g', 'tomato', 'm', 'y', 'lime', 'k','orange','pink','grey','tan','gold','r']
fig, ax = plt.subplots(2,2,figsize=(10,7),dpi=128)
for i,col in enumerate(df_eval_all.columns):
    n=int(str('22')+str(i+1))
    plt.subplot(n)
    df_col=df_eval_all[col]
    m =np.arange(len(df_col))
    plt.bar(x=m,height=df_col.to_numpy(),width=bar_width,color=colors)
    
    #plt.xlabel('Methods',fontsize=12)
    names=df_col.index
    plt.xticks(range(len(df_col)),names,fontsize=10)
    plt.xticks(rotation=40)
    plt.ylabel(col,fontsize=14)
    
plt.tight_layout()
#plt.savefig('柱状图.jpg',dpi=512)
plt.show()

 这个数据上,好像lstm 的效果是最好的,cnn最差。

有的同学会说,不对啊,我bilstm没有lstm效果好啊,还有加了注意力机制的gru为什么没有单独的gru效果好呢?

我只能说,“多做点实验就知道了....” ,深度学习都是玄学,在不同的数据集,不同的参数上,模型的效果对比有着截然不同的结论。

不要以为加的模块越多越好,加了组合模型效果一定比单一模型好,很多时候都是一顿操作猛如虎,一看效果二百五。 这是要看数据,看参数去调整的。

但是大部分时候,什么加了一堆的模态分解,优化算法,注意力,损失函数,效果都没最简单,最纯粹,最原始的LSTM, GRU的效果好。。。真的,我经验就是这样告诉我的,所以可以想象那些期刊论文的各种缝合模型是有多么水了吧。。


预测效果对比图

再画个预测值的对比图:

plt.figure(figsize=(10,5),dpi=256)
for i,col in enumerate(df_allmodel.columns):
    plt.plot(df_allmodel[col],label=col) # ,color=colors[i]

plt.plot(y_actual,label='actual',color='k',linestyle=':',lw=2)
plt.legend()
plt.ylabel('',fontsize=16)
plt.xlabel('time',fontsize=14)
#plt.savefig('点估计线对比.jpg',dpi=256)
plt.show()

 反正发论文都要这种图,但是也没啥意义,就是看看模型拟合预测的怎么样....

所以说写代码很简单,数据改一改就行。。要什么模块修改我的训练函数参数就行。效果不好调整参数改到效果好为止。

不同的模型就修改mode参数,有啥难度。。。

分析文字也可以gpt写,现在水论文的成本真的很低。。。


本次案例的全部代码文件和数据集获取可以参考:(模态分解系列演示)

这次案例是加上了模态分解,后面有时间再把优化算法,损失函数,区间估计什么的缝合手段也写一下,就各种组合,发论文都这样。。。


 创作不易,看官觉得写得还不错的话点个关注和赞吧,本人会持续更新python数据分析领域的代码文章~(需要定制类似的代码可私信)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1642462.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【算法与数据结构】哈希表

文章目录 引入哈希函数介绍便利店的例子Python3 中的哈希表C 中的哈希表 应用将散列表用于查找防止重复将散列表用作缓存 哈希冲突与解决链地址法开放寻址 总结参考资料写在最后 引入 假设你在一家便利店上班,你不熟悉每种商品的价格,在顾客需要买单是时…

WPF之XmlDataProvider使用

1,WPF XAML支持数据提供(DataProvider),但其提供的数据只供查看不可进行修改,删除,添加等。 数据提供者都继承自System.Windows.DataSourceProvider类,目前,WPF只提供两个数据提供者…

一键自动化博客发布工具,chrome和firfox详细配置

blog-auto-publishing-tools博客自动发布工具现在已经可以同时支持chrome和firefox了。 很多小伙伴可能对于如何进行配置和启动不是很了解,今天带给大家一个详细的保姆教程,只需要跟着我的步骤一步来就可以无障碍启动了。 前提条件 前提条件当然是先下…

c++ 红黑树学习及简单实现

1. 了解红黑树 1.1. 概念 红黑树,是一种二叉搜索树,但在每个节点增加一个存储位表示节点的颜色,可以是红色,或是黑色,通过对任何一条从根到叶子的路径上各个节点的着色方式进行限制,红黑树确保没有一条路…

DIM层数据处理

一、了解DIM层 这个就是数仓开发的分层架构 我们现在是在DIM层,从ods表中数据进行加工处理,导入到dwd层,但是记住我们依然是在DIM层,而非是上面的ODS和DWD层。 二、处理维度表数据 ①先确认hive的配置 -- 开启动态分区方案 -- …

ubuntu20文件安装和卸载cuda11.6

搜索cuda 11.6 nvidia,进入官网https://developer.nvidia.com/cuda-11-6-0-download-archive 选择linux --> runfile 用安装包安装 wget https://developer.download.nvidia.com/compute/cuda/11.6.0/local_installers/cuda_11.6.0_510.39.01_linux.run sudo s…

飞书API(7):MySQL 入库通用版本

一、引入 在上一篇介绍了如何使用 pandas 处理飞书接口返回的数据,并将处理好的数据入库。最终的代码拓展性太差,本篇来探讨下如何使得上一篇的最终代码拓展性更好!为什么上一篇的代码拓展性太差呢?我总结了几点: 列…

开源免费的网盘项目Cloudreve,基于Go云存储个人网盘系统源码(七牛、阿里云 OSS、腾讯云 COS、又拍云、OneDrive)

项目简介: 在现今的网盘服务中,用户经常遭遇限速和价格上涨的问题,这无疑增加了使用上的困扰。 为此,我今天要介绍一款开源且免费的网盘项目——Cloudreve。 这个项目是基于Go语言开发的云存储个人网盘系统,支持多种…

免费开源,无需 GPU,本地化部署大语言模型的对话系统

免费开源,无需 GPU,本地化部署大语言模型的对话系统 分类 编程技术 项目名: FreeAskInternet -- 本地化部署大语言模型的对话系统 Github 开源地址: https://github.com/nashsu/FreeAskInternet FreeAskInternet 是一个免费开源的工具&am…

「 网络安全常用术语解读 」通用漏洞报告框架CVRF详解

1. 背景 ICASI在推进多供应商协调漏洞披露方面处于领先地位,引入了通用漏洞报告框架(Common Vulnerability Reporting Format,CVRF)标准,制定了统一安全事件响应计划(USIRP)的原则,…

Python中无法pip的解决办法和pip的介绍

什么是pip? PIP是通用的Python包管理工具,提供了对 Python 包的查找、下载、安装、卸载、更新等功能。安装诸如Pygame、Pymysql、requests、Django等Python包时,都要用到pip。 注意:在Python3.4(一说是3.6&#xff09…

Electron 对 SQLite 进行加密

上一篇讲了如何在 Electron使用 SQLite,如果 SQLite 中存有敏感数据,客户端采用明文存储风险很高,为了保护客户数据,就需要对数据进行加密,由于 electron 对代码并不加密,所以这里排除通过逆向工程进行数据…

ArcGIS软件:地图投影的认识、投影定制

这一篇博客介绍的主要是如何在ArcGIS软件中查看投影数据,如何定制投影。 1.查看地图坐标系、投影数据 首先我们打开COUNTIES.shp数据(美国行政区划图),并点击鼠标右键,再点击数据框属性就可以得到以下的界面。 我们从…

深入理解分布式事务⑨ ---->MySQL 事务的实现原理 之 MySQL 中的XA 事务(基本原理、流程分析、事务语法、简单例子演示)详解

目录 MySQL 事务的实现原理 之 MySQL 中的XA 事务(基本原理、流程分析、事务语法、简单例子演示)详解MySQL 中的 XA 事务1、XA 事务的基本原理1-1:XA 事务模型图:1-2:XA 事务模型的两阶段提交操作:Prepare …

MLP手写数字识别(3)-使用tf.data.Dataset模块制作模型输入(tensorflow)

1、tensorflow版本查看 import tensorflow as tfprint(Tensorflow Version:{}.format(tf.__version__)) print(tf.config.list_physical_devices())2、MNIST数据集下载与预处理 (train_images,train_labels),(test_images,test_labels) tf.keras.datasets.mnist.load_data()…

02_Java综述

目录 面向对象编程两种范式抽象OOP 三原则封装继承多态多态、封装与继承协同工作 面向对象编程 面向对象编程(Object-Oriented Programming,OOP)在Java中核心地位。几乎所有的Java程序至少在某种程度上都是面向对象的。OOP与java是密不可分的。下面说一下OOP的理论…

【已解决】VSCode 连接远程 Ubuntu :检测到 #include 错误。请更新 includePath。

文章目录 1. 环境声明2. 解决过程 1. 环境声明 即使是同一个报错,在不同的环境中,报错原因、解决方法都是不同的,本文只能解决跟我类似的问题,如果你发现你跟我遇到的问题不太一样,建议寻找其他解法。 必须要吐槽的是…

吴恩达2022机器学习专项课程C2(高级学习算法)W1(神经网络):2.1神经元与大脑

目录 神经网络1.初始动机*2.发展历史3.深度学习*4.应用历程 生物神经元1.基本功能2.神经元的互动方式3.信号传递与思维形成4.神经网络的形成 生物神经元简化1.生物神经元的结构2.信号传递过程3.生物学术语与人工神经网络 人工神经元*1.模型简化2.人工神经网络的构建3.计算和输入…

基于51单片机的智能台灯proteus仿真设计( proteus仿真+程序+原理图+报告+讲解视频)

基于51单片机的红外光敏检测智能台灯控制系统仿真( proteus仿真程序原理图报告讲解视频) 1.主要功能: 基于51单片机的红外检测光照检测智能台灯仿真设计 1、检测光照强度并显示在数码管上。 2、具备红外检测人体功能。 3、灯光控制模式分为自动模式…

RabbiMQ(Docker 单机部署)

序言 本文给大家介绍如何使用 Docker 单机部署 RabbitMQ 并与 SpringBoot 整合使用。 一、部署流程 拉取镜像 docker pull rabbitmq:3-management镜像拉取成功之后使用下面命令启动 rabbitmq 容器 docker run \# 指定用户名-e RABBITMQ_DEFAULT_USERusername \# 指定密码-e R…