C++奇迹之旅:C++初阶模版

news2025/1/13 9:41:39

请添加图片描述

文章目录

  • 📝泛型编程
  • 🌠 函数模板
    • 🌉函数模板概念
    • 🌉函数模板格式
    • 🌉函数模板的原理
  • 🌠函数模板的实例化
    • 🌉模板参数的匹配原则
  • 🌠类模板
    • 🌉 类模板的定义格式
    • 🌉类模板的实例化
  • 🚩总结


📝泛型编程

泛型编程是一种编程范式,它允许程序员编写不依赖于特定数据类型的代码。在泛型编程中,程序员定义一些通用的算法和数据结构,这些可以在不同的数据类型上使用。

如:最开始的交换函数的时候,需要根据类型的交换,我们需要定义多个来造轮子:

typedef int Type;
void Swap(Type& left, Type& right)
{
	Type temp = left;
	left = right;
	right = temp;

}

void Swap(int& left, int& right)
{
	int temp = left;
	left = right;
	right = temp;
}

void Swap(double& left, double& right)
{

	double temp = left;
	left = right;
	right = temp;
}

使用函数重载虽然可以实现,但是有一下几个不好的地方:

  1. 重载的函数仅仅是类型不同,代码复用率比较低,只要有新类型出现时,就需要用户自己增加对应的函数
  2. 代码的可维护性比较低,一个出错可能所有的重载均出错

那能否告诉编译器一个模子,让编译器根据不同的类型利用该模子来生成代码呢?

如果在C++中,也能够存在这样一个模具,通过给这个模具中填充不同材料(类型),来获得不同材料的铸件(即生成具体类型的代码),那将会节省许多头发。
在这里插入图片描述
泛型编程:编写与类型无关的通用代码,是代码复用的一种手段。模板是泛型编程的基础

🌠 函数模板

🌉函数模板概念

函数模板代表了一个函数家族,该函数模板与类型无关,在使用时被参数化,根据实参类型产生函数的特定类型版本。

🌉函数模板格式

语法格式:

template<typename T1, typename T2,......,typename Tn>
返回值类型 函数名(参数列表){}

template <typename T>//这是函数模板的声明部分。
//也可以使用 class 关键字代替 typename,两者都可以
template <class T>
return_type function_name(parameter_list)
{
    // function body
}

例如:

template<typename T>
//template<class T>
void Swap(T& left, T& right)
{
	T temp = left;
	left = right;
	right = temp;
}

int main()
{
	int a = 1, b = 2;
	Swap(a, b);
	cout << a << " " << b << endl;

	double c = 3.1, d = 4.2;
	Swap(c, d);
	cout << c << " " << d << endl;
	return 0;
}

在这里插入图片描述

注意:typename是用来定义模板参数关键字,也可以使用class(切记:不能使用struct代替class)

🌉函数模板的原理

那么如何解决上面的问题呢?大家都知道,瓦特改良蒸汽机,人类开始了工业革命,解放了生产力。机器生产淘汰掉了很多手工产品。本质是什么,重复的工作交给了机器去完成。有人给出了论调:懒人创造世界。

函数模板是一个蓝图,它本身并不是函数,是编译器用使用方式产生特定具体类型函数的模具。所以其实模板就是将本来应该我们做的重复的事情交给了编译器
在这里插入图片描述
注意:Swap在调用时,调用的不是void Swap(T& left, T& right),而是编译器预先根据要调用的类型,进行推演。
编译器负责在编译时分析模板定义,并在需要时生成特定类型的代码,编译器会检查模板的语法,并确保模板的使用是合法的,编译器会根据实际使用的类型参数,生成相应的函数或类的实现。

00736405  call        Swap<int> (07313ACh) 
00736481  call        Swap<double> (073144Ch) 

这函数模版的的生成,是编译器来完成的。
在这里插入图片描述
在编译器编译阶段,对于模板函数的使用,编译器需要根据传入的实参类型来推演生成对应类型的函数以供调用。比如:当用double类型使用函数模板时,编译器通过对实参类型的推演,将T确定为double类型,然后产生一份专门处理double类型的代码,对于字符类型也是如此。

🌠函数模板的实例化

用不同类型的参数使用函数模板时,称为函数模板的实例化
模板参数实例化分为:隐式实例化和显式实例化

template<typename T>
T Add(const T& left, const T& right)
{
	return left + right;
}
int main()
{
	int a1 = 10, a2 = 20;
	double d1 = 10.1, d2 = 20.2;

	Add(a1, (int)d2);
	cout << Add(a1, (int)d2) << endl;
	return 0;
}

严重性 代码 说明 项目 文件 行 禁止显示状态
错误 C2784 “T Add(const T &,const T &)”: 未能从“double”“const T &”推导 模板 参数
在这里插入图片描述

该语句不能通过编译,因为在编译期间,当编译器看到该实例化时,需要推演其实参类型
通过实参a1将T推演为int,通过实参d1T推演为double类型,但模板参数列表中只有一个T, 编译器无法确定此处到底该将T确定为int 或者 double类型而报错

注意:在模板中,编译器一般不会进行类型转换操作,因为一旦转化出问题,编译器就需要背黑锅

此时有两种处理方式:

  1. 用户自己来强制转化
Add(a1, (int)d2);

在这里插入图片描述

  1. 使用显式实例化:在函数名后的<>中指定模板参数的实际类型
// 显式实例化
 Add<int>(a, b);

如果类型不匹配,编译器会尝试进行隐式类型转换,如果无法转换成功编译器将会报错。

🌉模板参数的匹配原则

  1. 一个非模板函数可以和一个同名的函数模板同时存在,而且该函数模板还可以被实例化为这个非模板函数
// 专门处理int的加法函数
int Add(int left, int right)
{
	cout << "int Add(int left, int right)" << endl;
	return left + right;
}

// 通用加法函数
template<class T>
T Add(T left, T right)
{
	cout << "T Add(T left, T right)" << endl;
	return left + right;
}

int main()
{
	Add(1, 2);// 与非模板函数匹配,编译器不需要特化
	cout << Add(1, 2) << endl;

	Add<int>(1, 2);// 调用编译器特化的Add版本
	cout << Add<int>(1, 2) << endl;
	return 0;
}

在这里插入图片描述
2. 对于非模板函数和同名函数模板,如果其他条件都相同,在调动时会优先调用非模板函数而不会从该模板产生出一个实例。如果模板可以产生一个具有更好匹配的函数, 那么将选择模板

//专门处理int的加法函数
int Add(int left, int right)
{
	cout << "int Add(int left, int right)" << endl;
	return left + right;
}
// 通用加法函数
template<class T1,class T2>
T1 Add(T1 left, T2 right)
{
	cout << "T1 Add(T1 left, T2 right)" << endl;
	return left + right;
}

int main()
{
	Add(1, 2);// 与非函数模板类型完全匹配,不需要函数模板实例化

	Add(1, 2.0);// 模板函数可以生成更加匹配的版本,编译器根据实参生成更加匹配的Add函数
	
	return 0;
}

在这里插入图片描述

  1. 模板函数不允许自动类型转换,但普通函数可以进行自动类型转换
    对于模版T1 Add(T1 left, T2 right)不知道返回值是T1或T2,可以选择auto,auto虽然不太适合做返回值,但是对于简单普通函数操作,可以进行自动类型转换
//专门处理int的加法函数
int Add(int left, int right)
{
	cout << "int Add(int left, int right)" << endl;
	return left + right;
}

//auto可作简单处理的函数返回值
template<class T1,class T2>
auto Add(const T1& left, const T2& right)
{
	cout << "auto Add(const T1& left, const T2& right)" << endl;
	return left + right;
}
int main()
{
	Add(1, 2);// 与非函数模板类型完全匹配,不需要函数模板实例化
	cout << Add(1, 2) << endl;

	Add(1, 2.0);// 模板函数可以生成更加匹配的版本,编译器根据实参生成更加匹配的Add函数
	cout << Add(1, 2.0) << endl;
	return 0;
}

在这里插入图片描述
函数的返回值:应该显示使用,否则会报错

class A
{
public:
	A(int a = 0)
		:_a(a)
	{
		cout << "A():" << this << endl;
	}

	~A()
	{
		cout << "~A():" << this << endl;
	}
private:
	int _a;
};
template<class T>
T* func(int a)
{
	T* p = (T*)operator new(sizeof(T));
	//动态分配了一块内存, 大小为 sizeof(T)
	new(p)T(a);
	// 在分配的内存上构造一个 T 类型的对象,并传递参数 a。
	return p;
}

int main()
{
	int* ret_1 = func<int>(1);
	A* ret_2 = func<A>(1);
	return 0;
}

🌠类模板

🌉 类模板的定义格式

template<class T1, class T2, ..., class Tn>
class 类模板名
{
 // 类内成员定义
};

例如:

template <typename T>
class Stack 
{
public:
    Stack() 
        : top(-1) 
    {}

    void push(const T& item) 
    {
        if (top == MAX_SIZE - 1) 
        {
            throw "Stack overflow";
        }
        data[++top] = item;
    }

    T pop() 
    {
        if (top == -1) 
        {
            throw "Stack underflow";
        }
        return data[top--];
    }

    bool isEmpty() const 
    {
        return top == -1;
    }

    bool isFull() const 
    {
        return top == MAX_SIZE - 1;
    }

private:
    static const int MAX_SIZE = 100;
    T data[MAX_SIZE];
    int top;
};

int main()
{
    Stack<int> intstack;
    Stack<string> stringstack;

    return 0;
}

模版Stack中只是提供了一个模具,具体印刷出什么模型,是由编译器最终实例化决定的,这里的模版不是最终版

注意:模版不建议声明和定义分离到.h.cpp会出现链接错误,要分离也分离在.h

template<class T>
void Stack<T>::Push(const T& item)
{
	if (top == MAX_SIZE - 1) 
        {
            throw "Stack overflow";
        }
        data[++top] = item;
	// 扩容
	//_array[_size] = data;
	//++_size;
}

🌉类模板的实例化

类模板实例化与函数模板实例化不同,类模板实例化需要在类模板名字后跟<>,然后将实例化的类型放在<>中即可,类模板名字不是真正的类,而实例化的结果才是真正的类。

	Stack<int> intstack;
    Stack<string> stringstack;

🚩总结

请添加图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1641463.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

用vim或gvim编辑程序

vim其实不难使用&#xff0c;学习一下就好了。简单功能很快学会。它有三种模式&#xff1a;命令模式&#xff0c;编辑模式&#xff0c;视模式。打开时在命令模式。在命令模式下按 i 进入编辑模式&#xff0c;在编辑模式下按<Esc>键退出编辑模式。在命令模式按 :wq 保存文…

STM32入门学习之DMA

1.直接存储访问DMA(Direct Memory Access)&#xff1a;DMA传输不需要CPU的参与&#xff0c;直接在内存和I/O设备间开辟了一条新的数据传输通道&#xff0c;不仅提高数据传输的速率&#xff0c;还因为不需要CPU的干预&#xff0c;从而提高了CPU的利用率。(注&#xff1a;文中的资…

从永远到永远-和弦-挂留和弦

挂留和弦 1.概念2.指型1.Xsus2和弦2.Xsus4和弦 3.应用 1.概念 该篇说下和弦中的“渣男”、“绿茶”&#xff0c;挂留和弦。 挂留&#xff08;suspended&#xff09;和弦是将三和弦的三音替换成大二度或纯四度音形成的&#xff0c;包括挂留二和弦、挂留四和弦两种。 三音是一个…

【Android学习】简易计算器的实现

1.项目基础目录 新增dimens.xml 用于控制全部按钮的尺寸。图片资源放在drawable中。 另外 themes.xml中原来的 <style name"Theme.Learn" parent"Theme.MaterialComponents.DayNight.DarkActionBar">变为了&#xff0c;加上后可针对button中增加图片…

【nature review】用于非易失性射频开关技术的新兴存储电子器件

这篇文章是一篇关于非挥发性射频&#xff08;RF&#xff09;开关技术的综述文章&#xff0c;发表在《Nature Reviews Electrical Engineering》2024年1月的期刊上。文章详细介绍了新兴的基于记忆电子技术的RF开关技术&#xff0c;特别是在二维&#xff08;2D&#xff09;材料方…

Oracle23ai来了,23爱,全能、超级巨兽...

&#x1f4e2;&#x1f4e2;&#x1f4e2;&#x1f4e3;&#x1f4e3;&#x1f4e3; 作者&#xff1a;IT邦德 中国DBA联盟(ACDU)成员&#xff0c;10余年DBA工作经验&#xff0c; Oracle、PostgreSQL ACE CSDN博客专家及B站知名UP主&#xff0c;全网粉丝10万 擅长主流Oracle、My…

一毛钱不到的FH8208C单节锂离子和锂聚合物电池一体保护芯片

前言 目前市场上电池保护板&#xff0c;多为分体方案&#xff0c;多数场合使用没有问题&#xff0c;部分场合对空间有进一步要求&#xff0c;或者你不想用那么多器件&#xff0c;想精简一些&#xff0c;那么这个芯片就很合适&#xff0c;对于充电电池来说&#xff0c;应在使用…

gige工业相机突破(一)

gige相机能不能绕开相机生产商提供的sdk&#xff0c;而直接取到像&#xff1f; 两种办法&#xff0c;第一&#xff0c;gige vision2.0说明书&#xff0c;第二&#xff0c;genicam 首先你会去干什么事&#xff1f; 好几年&#xff0c;我都没有突破&#xff0c;老虎吃天&#x…

Jenkins流水线部署springboot项目

文章目录 Jenkins流水线任务介绍Jenkins流水线任务构建Jenkins流水线任务Groovy脚本Jenkinsfile实现 Jenkins流水线任务实现参数化构建拉取Git代码构建代码制作自定义镜像并发布 Jenkins流水线任务介绍 之前采用Jenkins的自由风格构建的项目&#xff0c;每个步骤流程都要通过不…

InfiniFlow 創始人兼CEO張穎峰確認出席“邊緣智能2024 - AI開發者峰會”

隨著AI技術的迅猛發展&#xff0c;全球正逐步進入邊緣計算智能化與分布式AI深度融合的新時代&#xff0c;共同書寫著分布式智能創新應用的壯麗篇章。邊緣智能&#xff0c;作為融合邊緣計算和智能技術的新興領域&#xff0c;正逐漸成為推動AI發展的關鍵力量。借助分布式和去中心…

JavaScript 如何理解柯里化函数结构及调用

文章目录 柯里化函数是什么逐步理解柯里化函数 柯里化函数是什么 柯里化&#xff08;Currying&#xff09;函数&#xff0c;又称部分求值&#xff0c;是一种函数转换技术。这种技术将一个接受多个参数的函数转换为一系列接受单一参数的函数。具体来说&#xff0c;一个柯里化的…

AI大模型探索之路-训练篇11:大语言模型Transformer库-Model组件实践

系列篇章&#x1f4a5; AI大模型探索之路-训练篇1&#xff1a;大语言模型微调基础认知 AI大模型探索之路-训练篇2&#xff1a;大语言模型预训练基础认知 AI大模型探索之路-训练篇3&#xff1a;大语言模型全景解读 AI大模型探索之路-训练篇4&#xff1a;大语言模型训练数据集概…

C语言 | Leetcode C语言题解之第67题二进制求和

题目&#xff1a; 题解&#xff1a; void reserve(char* s) {int len strlen(s);for (int i 0; i < len / 2; i) {char t s[i];s[i] s[len - i - 1], s[len - i - 1] t;} }char* addBinary(char* a, char* b) {reserve(a);reserve(b);int len_a strlen(a), len_b st…

LeetCode 面试经典150题 28.找出字符串中第一个匹配项的下标

题目&#xff1a;给你两个字符串 haystack 和 needle &#xff0c;请你在 haystack 字符串中找出 needle 字符串的第一个匹配项的下标&#xff08;下标从 0 开始&#xff09;。如果 needle 不是 haystack 的一部分&#xff0c;则返回 -1 。 思路&#xff1a;暴力&#xff08;…

一个肉夹馍思考的零耦合设计

刷抖音听说知识付费是普通人的一个收入增长点&#xff0c;写了三十几篇文章一毛钱没赚&#xff0c;感觉有点沮丧。天上下着小雨雨&#xff0c;稀稀嗦嗦的&#xff0c;由于了很久还是买了一个&#x1f928;。 忽然觉得生活有点悲催&#xff0c;现在已经变得斤斤计较&#xff0c;…

「 网络安全常用术语解读 」SBOM主流格式CycloneDX详解

CycloneDX是软件供应链的现代标准。CycloneDX物料清单&#xff08;BOM&#xff09;可以表示软件、硬件、服务和其他类型资产的全栈库存。该规范由OWASP基金会发起并领导&#xff0c;由Ecma International标准化&#xff0c;并得到全球信息安全界的支持&#xff0c;如今CycloneD…

pg数据库学习知识要点分析-1

知识要点1 对象标识OID 在PostgreSQL内部&#xff0c;所有的数据库对象都通过相应的对象标识符&#xff08;object identifier&#xff0c;oid&#xff09;进行管理&#xff0c;这些标识符是无符号的4字节整型。数据库对象与相应oid 之间的关系存储在对应的系统目录中&#xf…

nginx--压缩https证书favicon.iconginx隐藏版本号 去掉nginxopenSSL

压缩功能 简介 Nginx⽀持对指定类型的⽂件进行压缩然后再传输给客户端&#xff0c;而且压缩还可以设置压缩比例&#xff0c;压缩后的文件大小将比源文件显著变小&#xff0c;这样有助于降低出口带宽的利用率&#xff0c;降低企业的IT支出&#xff0c;不过会占用相应的CPU资源…

【JVM】GC调优(优化JVM参数)、性能调优

GC调优 GC调优的主要目标是避免由垃圾回收引起程序性能下降。 GC调优的核心指标 垃圾回收吞吐量&#xff1a;执行用户代码时间/&#xff08;执行用户代码时间 GC时间&#xff09;延迟&#xff1a;GC延迟 业务执行时间内存使用量 GC调优步骤 发现问题&#xff1a;通过监控…

leetcode_43.字符串相乘

43. 字符串相乘 题目描述&#xff1a;给定两个以字符串形式表示的非负整数 num1 和 num2&#xff0c;返回 num1 和 num2 的乘积&#xff0c;它们的乘积也表示为字符串形式。 注意&#xff1a;不能使用任何内置的 BigInteger 库或直接将输入转换为整数。 示例 1: 输入: num1 &q…