分布式与一致性协议之Raft算法与一致哈希算法(一)

news2025/1/23 12:03:27

Raft算法

Raft与一致性

有很多人把Raft算法当成一致性算法,其实它不是一致性算法而是共识算法,是一个Multi-Paxos算法,实现的是如何就一系列值达成共识。并且,Raft算法能容忍少数节点的故障。虽然Raft算法能实现强一致性,也就是线性一致性(Linearizability),但需要客户端协议的配合。在实际场景中,我们一般需要根据场景特点,在一致性强度和实现复杂度之间进行权衡。比如Consul实现了3种一致性模型。

  • 1.default:客户端访问领导者节点执行读操作,领导者确认自己处于稳定状态时(在leader leasing时间内),返回本地数据给客户端,否则返回错误给客户端。
    在这种情况下,客户端是可能读到旧数据的,比如此时发生了网络分区,新领导者已经更新过数据,但因为网络故障,旧领导者未更新数据也未退位,仍处于稳定状态。
  • 2.consistent:客户端访问领导者节点执行读操作,领导者在大多数节点确认自己仍是领导者之后返回本地数据给客户端,否则返回错误给客户端。在这种情况下,客户端读到的都是最新数据。
  • 3.stale:从任意节点读数据,不局限于领导者节点,客户端可能会读到旧数据。
    一般而言,在实际工程种,使用Consul的consistent旧可以了,不用线性一致性,只要能保证写操作完成后,每次读都能读到最新值即可。比如为了实现幂等操作,我们使用一个编号(ID)来唯一标记一个操作,并使用一个状态字段(nil/done)来标记操作是否已经执行,那么只要我们能保证设置了ID对应状态值为done后,能立即和一直读到最新状态值,旧可以防止操作的重复执行,实现幂等性。
  • 总的来说,Raft算法能很好地处理绝大部分场景地一致性问题,推荐在设计分布式系统时,优先考虑Raft算法,当Raft算法不能满足现有场景需求时,再去调研其他共识算法。比如QQ后台地海量分布式系统,其中配置中心、名字服务以及时序数据库地META节点,采用Raft算法。在设计时序数据库的DATA节点一致性时,基于水平扩展、性能和数据完整性等考虑,就没采用Raft算法,而是采用了Quorum NWR、失败重传、反熵等机制。这样安排的好处是,不仅满足了业务的需求,还通过尽可能采用最终一致性方案的方式,实现系统的高性能,降低了成本。

注意。
Raft算法和兰伯特的Mutli-Paxos的不同之处有两点:

  • 1.首先,在Raft算法中,不是所有节点都能当领导者,只有日志较完整地节点(也就是日志完整度不比半数节点低的节点)才能当选领导者
  • 2.其次,在Raft算法中,日志必须是连续的

思维拓展

Raft算法实现了"一切以我为准"的强领导者模型,那么这个设计有什么限制和局限呢?
领导者接收到大多数的"复制成功"响应后,就会将日志应用到自己的状态机,然后返回"成功"给客户端。如果此时有一个节点不在"大多数"中,也就是说它接收日志项失败,那么Raft算法会如何实现日志的一致呢?

对于接收日志项失败的节点,Raft算法采用了以下机制来确保日志的一致性:

  • 1.日志追赶(Log Compaction):如果某个节点因为某些原因(如网络分区、节点故障等)没有接收到最新的日志项,当该节点重新加入集群并成为跟随者后,它会向领导者请求复制缺失的日志项。领导者会将缺失的日志项发送给该节点,使其能够追赶上最新的日志状态。
  • 2.安全性检查:在复制缺失的日志项之前,领导者会首先检查该节点的日志是否与自己保持一致。如果发现不一致(例如该节点包含了一些领导者没有的日志项),领导者会拒绝复制请求,并告知该节点回滚到某个一致的日志位置后再重新请求复制。这样可以确保在复制过程中不会出现日志不一致的情况。
  • 3.安全性保证:Raft算法通过保证“已提交的日志项不会被覆盖或删除”来确保日志的一致性。具体来说,如果一条日志项已经被标记为已提交,那么领导者在后续的日志复制过程中,就不会再覆盖或删除这条已提交的日志项。即使领导者节点出现故障并被新的领导者替换,新的领导者也会继续复制和提交之前的已提交日志项,以确保所有节点的日志保持一致

重点总结

在了解了Raft算法的特点、领导者选举、什么是日志、如何复制日志以及如何处理不一致日志,还有成员变更的问题和单节点变更的方法等。希望大家能明确以下几个重点:

  • 1.本质上,Raft算法以领导者为中心,选举出的领导者以"一切以我为准"的方式,达成值的共识和实现各节点日志的一直。
  • 2.在Raft算法中,副本数据是以日志的形式存在的,其中日志项中的指令表示用户指定的数据。在Raft算法中日志必须是连续的,而兰伯特的Multi-Paxos不要求日志是连续的,而且在Raft算法中,日志不仅是数据的载体,日志的完整性还影响着领导者选举的结果。也就是说,日志完整性最高的节点才能当选领导者
  • 3.单节点变更是利用"一次变更一个节点,不会同时存在旧配置和新配置两个’大多数’"的特性,实现成员变更。

在了解完Raft算法后,有人可能会有这样的疑问:强领导者模型会限制集群的写性能,有什么办法能突破Raft集群的写性能瓶颈呢?可以通过一致哈希算法来实现分集群。

一致哈希算法

概述

有些人可能有这样的疑问:如果我们通过Raft算法实现了KV存储,虽然领导者模型简化了算法实现和共识协商,但写请求只能限制在领导者节点上处理,导致集群的接入性能约等于单机,随着业务发展,集群的性能可能就扛不住了,造成系统过载和服务不可用,这时该怎么办呢?
其实这是一个非常常见的问题。在我看来,这时我们就要通过分集群突破单集群的性能限制了。有人可能会说,分集群还不简单吗? 在模型中加入一个Proxyc层,由Proxy层处理来自客户端的读写请求,在接收到读写请求后,通过对Key做哈希找到对应的集群就可以了.
哈希算法的确是个办法,但它有个明显的缺点:当需要变更集群数时(比如从两个集群扩展为三个集群),大部分的数据都需要迁移,重新映射,而数据的迁移成本是非常高的,那么如何解决哈希算法数据迁移成本高的通电呢?答案就是使用一致哈希(Consistent Hashing)算法。
为了更好地理解如何通过哈希寻址实现KV存储地分集群,除了分析哈希算法寻址问题的本质之外,还会分析一致哈希是如何解决哈希算法数据迁移成本高这个痛点,以及如何实现数据访问的冷热相对均匀。你不仅能理解一致性哈希算法的原理,还能掌握通过一致哈希算法实现数访问冷热均匀的实战能力。

我们先来看一个思考题。
假设我们有一个由A、B、C3个节点组成(为了方便演示,使用节点来替代集群)的KV服务,每个节点存放不同的KV数据,如图所示
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1638836.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

打印机-STM32版本 硬件部分

最终PCB EDA工程: 一、确定芯片型号 根据项目需求,梳理需要用到的功能, 电量检测:ADC 按键:IO input外部中断 LED:IO output 温度检测:ADC 电机控制:IO output 打印通讯:SPI …

HarmaonyOS鸿蒙应用科普课

一、什么是鸿蒙OS? 1.概念: 先给大家讲讲今天讲课的主题,鸿蒙OS是什么?鸿蒙系统大家都知道,就是一个操作系统,我们未来是为的成为鸿蒙程序员。所以我们不要将鸿蒙os完全等同于手机操作系统,太…

笔记:编写程序,绘制一个展示支付宝月账单报告的饼图,

文章目录 前言一、饼图是什么?二、分析题目三、编写代码总结 前言 编写程序,绘制一个展示支付宝月账单报告的饼图,实现过程如下: (1) 导入 matplotlib.pyplot 模块; (2)…

前端业务开发中使用原生js和elementui两种方式实现头像裁切上传的功能

日常业务开发中,无论是后台管理系统还是前台界面,都会遇到图片裁剪的业务需求,选择合适的尺寸或者图片的关键部分,满足我们的功能需求!! 效果预览 效果一: 效果二: 实现过程 1.原生js实现方…

全栈开发之路——前端篇(2)文件、组件与setup引入

全栈开发一条龙——前端篇 第一篇:框架确定、ide设置与项目创建 本文系该系列第二篇,主要将介绍各个文件的意义、组件结构与导入以及setup的引入。 目录 一、src外文件介绍.gitignore为git忽略文件env.d.ts用于识别其他文件index.htmljson文件vite.confi…

七、Google Protobuf

这里写自定义目录标题 一、编码和解码二、Netty本身的编码解码机制和存在的问三、Protobuf四、Protobuf示例1五、ProtoBuffer传输多种数据类型 一、编码和解码 二、Netty本身的编码解码机制和存在的问 netty提供的编码器 netty提供的解码器 存在的问题 无法跨语言序列化后…

【C语言】动态内存分配(一)

目录 1.为什么要有动态内存分配 2.malloc和free 2.1malloc 2.2free 1.为什么要有动态内存分配 我们已经掌握的内存开辟方式有: 但是上述的开辟空间的方式有两个特点: ⭐空间开辟大小是固定的。 ⭐数组在申明的时候,必须指定数组的长度,数组空间一旦…

大模型实体化:个人智能体为AI PC注入灵魂

从Alpha GO到Chat GPT,从DALL-E到Sora,AI时代的演进正行驶在快车道,人工智能正受到有史以来最高的关注。人们在生怕被快速变革的AI时代抛弃的同时,也不禁疑惑,AI浪潮的下一步在哪里? 大模型实体化&#xff…

java-函数式编程-函数对象

定义 什么是合格的函数?无论多少次执行函数,只要输入一样,输出就不会改变 对象方法的简写 其实在类中,我们很多参数中都有一个this,被隐藏传入了 函数也可以作为对象传递,lambda就是很好的例子 函数式接口中…

jenkins汉化不完全问题解决

jenkins安装完Localization:Chinese(Simplified)中文语言包后,发现是出现汉化不完全或者部分汉化的情况,如下图: 解决方法: 启动命令中指定语言 -Duser.languageen_US.UTF-8 或者 -Duser.languageC.UTF-8原因分析:安…

第十五届蓝桥杯Java软件开发大学B组自我经验小结

自我介绍 23届大一 双非 计院科班 软件工程 江苏人在吉林上大学 Java蒟蒻 在学校的宣传下 有幸参加了第十五届蓝桥杯Java大学b组省赛 蓝桥杯说明 就是一个算法比赛吧 考试时间9.00到1.00 四小时 带准考证和身份证和笔 草稿纸会发 赛制是IOC就是不会给任何反馈 就是你…

基于粒子滤波器的电池剩余使用寿命计算matlab仿真

目录 1.课题概述 2.系统仿真结果 3.核心程序与模型 4.系统原理简介 4.1 粒子滤波器基础 4.2 电池剩余使用寿命建模与预测 4.3 粒子滤波器在电池寿命预测中的应用 5.完整工程文件 1.课题概述 基于粒子滤波器的电池剩余使用寿命计算。根据已知的数据,预测未来…

Python绘制的好看统计图

代码 sx [Accent, Accent_r, Blues, Blues_r, BrBG, BrBG_r, BuGn, BuGn_r, BuPu, BuPu_r, CMRmap, CMRmap_r, Dark2, Dark2_r, GnBu, GnBu_r, Greens, Greens_r, Greys, Greys_r, OrRd, OrRd_r, Oranges, Oranges_r, PRGn, PRGn_r, Paired, Paired_r, Pastel1, Pastel1_r, P…

数据结构(C):玩转顺序表

🍺0.前言 言C之言,聊C之识,以C会友,共向远方。各位博友的各位你们好啊,这里是持续分享数据结构知识的小赵同学,今天要分享的数据结构知识是顺序表,在这一章,小赵将会向大家展开聊聊顺…

PotatoPie 4.0 实验教程(31) —— FPGA实现摄像头图像高斯滤波

什么是高斯滤波 高斯滤波是一种常见的图像处理技术,用于去除图像中的噪声和平滑图像。它的原理基于统计学中的高斯分布(也称为正态分布)。 在高斯滤波中,一个二维的高斯核函数被用来对图像中的每个像素进行加权平均。这个高斯核…

基于Java+SpringBoot+Mybaties-plus+Vue+elememt+hadoop + redis 医院就诊系统 设计与实现

一.项目介绍 前端:患者注册 、登录、查看首页、医生排班、药品信息、预约挂号、就诊记录、电子病历、处方开药、我的收藏 后端分为: 医生登录:查看当前排班信息、查看患者的挂号情况、设置患者就诊记录、电子病历、给患者开药和个人信息维护 …

LeetCode 11—— 盛最多水的容器

阅读目录 1. 题目2. 解题思路一3. 代码实现一4. 解题思路二5. 代码实现二 1. 题目 2. 解题思路一 暴力法,遍历所有可能的垂线对 ( i , j ) (i, j) (i,j),求取最大面积: a r e a m i n ( h [ i ] , h [ j ] ) ∗ ( j − i ) area min(h[i]…

when to create a ViewRootImpl

when to create a ViewRootImpl when method setView is called: when method dispatchDetachedFromWindow is called:

2024年【起重机械安全管理】考试内容及起重机械安全管理操作证考试

题库来源:安全生产模拟考试一点通公众号小程序 起重机械安全管理考试内容根据新起重机械安全管理考试大纲要求,安全生产模拟考试一点通将起重机械安全管理模拟考试试题进行汇编,组成一套起重机械安全管理全真模拟考试试题,学员可…

ubuntu20.04安装nodejs并创建简单的node.js应用

一. 安装nodejs Node.js 为 Linux、Windows 和 macOS 提供了不同的软件包。您可以访问 Node.js 官方网站并选择与您的操作系统对应的下载链接。 第一步:打开官网下载源文件 中文网址:http://nodejs.cn/download/ 第二步:解压压缩包 tar -xvf node-v18.…