GPU 架构与 CUDA 关系 并行计算平台和编程模型 CUDA 线程层次结构 GPU 的算力是如何计算的 算力峰值

news2024/11/18 23:38:17

GPU 架构与 CUDA 关系

本文主要包含 NVIDIA GPU 硬件的基础概念、CUDA(Compute Unified Device Architecture)并行计算平台和编程模型,详细讲解 CUDA 线程层次结构,最后将讲解 GPU 的算力是如何计算的,这将有助于计算大模型的算力峰值和算力利用率。

GPU 硬件基础概念GPU 架构与 CUDA 的关系紧密相连,两者共同构成了 NVIDIA 在并行计算领域的核心技术。下面,我将分别介绍 NVIDIA GPU 硬件的基础概念、CUDA 并行计算平台和编程模型,以及 CUDA 线程层次结构,并解释 GPU 算力的计算方法。

一、NVIDIA GPU 硬件基础概念

GPU(图形处理单元)是一种专为图形渲染而设计的处理器。与传统的 CPU 相比,GPU 拥有更多的核心和更高的内存带宽,使其在处理大规模并行计算任务时具有显著优势。NVIDIA 的 GPU 架构通常包括多个流处理器(Streaming Multiprocessors,SMs),每个 SM 包含多个核心和内存控制器,用于执行并行计算任务。

二、CUDA 并行计算平台和编程模型

CUDA(Compute Unified Device Architecture)是 NVIDIA 开发的一种并行计算平台和编程模型,它允许开发者使用 C/C++ 语言编写程序,充分利用 GPU 的并行计算能力。CUDA 编程模型将 GPU 视为一个设备(device),而 CPU 则作为主机(host)。主机负责任务调度和数据传输,而设备则负责执行并行计算任务。

三、CUDA 线程层次结构

CUDA 的线程层次结构包括网格(grid)、块(block)和线程(thread)。一个网格包含多个块,每个块包含多个线程。这些线程在 GPU 上并行执行,以完成计算任务。开发者可以通过调整网格、块和线程的大小和数量来优化并行计算性能。

四、GPU 算力计算

GPU 的算力通常通过浮点运算能力来衡量,具体指标包括单精度浮点运算能力(FP32)和双精度浮点运算能力(FP64)。算力计算通常涉及以下几个关键参数:

核心频率(Core Clock):GPU 核心的运行速度,以兆赫兹(MHz)为单位。
核心数量:GPU 中用于执行计算任务的核心数量。
显存带宽(Memory Bandwidth):GPU 与显存之间数据传输的速度,以每秒传输的数据量(GB/s)为单位。
通过综合考虑这些参数,可以计算出 GPU 的理论峰值算力。例如,对于单精度浮点运算,算力峰值可以通过以下公式计算:

算力峰值(FP32) = 核心频率 × 核心数量 × 每个核心的单精度浮点运算能力

需要注意的是,实际算力利用率会受到多种因素的影响,如任务调度、内存访问模式等。因此,在实际应用中,需要根据具体任务和数据集来优化 CUDA 程序,以充分发挥 GPU 的性能。

总结:GPU 架构与 CUDA 之间的关系是相辅相成的。NVIDIA 的 GPU 架构为并行计算提供了强大的硬件支持,而 CUDA 则提供了一种高效的编程模型,使开发者能够充分利用 GPU 的性能。通过深入了解 CUDA 线程层次结构和 GPU 算力计算方法,我们可以更好地优化大模型的计算性能,提高算力利用率。

A100 GPU 架构中 GPC(Graphic Processing Cluster)表示图像处理簇,一共有 8 个。共有两个 L2 Cache 并且可以互相实现数据同步,通过 Memory Controller 实现与高带宽存储器 HBM2(High Bandwidth Memory)进行数据交换。

每个 GPC 中包含 TPC(Texture processing cluster)表示纹理处理簇,每个处理簇被分为多个 SM(Streaming Multiprocessors)流处理器,SM 中包含多个 CUDA core 和 Tensor Core,用于处理图形图形和 AI 张量计算。

SM(Streaming Multiprocessors)称作流式多处理器,核心组件包括 CUDA 核心、共享内存、寄存器等。SM 包含很多为线程执行数学运算的 core,是英伟达 GPU 的核心,在 CUDA 中可以执行数百个线程、一个 block 上线程放在同一个 SM 上执行,一个 SM 有限的 Cache 制约了每个 block 的线程数量。

SM 主要组成如表所示,以英伟达 GP 100 为例,一共有 64 个 CUDA Core,Register File 存储大小为 256 KB,Shared Memory 内存大小为 64 KB,Active Thread 总线程数量是 2048,Active Block 数量是 32,Active Grid 数量是 8。

CUDA Core 向量运算单元 FP32-FPU、FP64-DPU、INT32-ALU
Tensor Core 张量运算单元 FP16、BF16、INT8、INT4
Special Function Units 特殊函数单元 超越函数和数学函数,例如反平方根、正余弦等
Warp Scheduler 线程束调度器 XX Thread/clock
Dispatch Unit 指令分发单元 XX Thread/clock
Multi Level Cache 多级缓存 L0/L1 Instruction Cache、L1 Data Cache & Shared Memory
Register File 寄存器堆
Load/Store 访问存储单元 LD/ST,负责数据处理

SP(Streaming Processor)流处理器是最基本的处理单元,最后线程具体的指令和任务都是在 SP 上进行处理的,GPU 在进行并行计算时就是很多个 SP 同时处理。在 Fermi 架构之后,SP 被改称为 CUDA Core,通过 CUDA 来控制具体的指令执行。

在 Fermi 架构中,通过 CUDA 来控制具体的指令执行,是最小的运算执行单元。所以对于现在的 NVIDIA GPU 架构来讲,流处理器的数量就是 CUDA Core 的数量。一个 SM 中包含了 2 组各 16 个 CUDA Core,每个 CUDA Core 包含了一个整数运算单元 ALU(Arthmetic Logit Unit)和一个浮点运算单元 FPU(Floating Point Unit)。

Volta 架构取消 CUDA core,变为单独的 FP32 FPU 和 INT32 ALU,因为 FP32:INT32 是 1:1 的关系,因此还是可以将它们合并起来一起称为原来的 CUDA Core,这样做的好处是每个 SM 现在支持 FP32 和 INT32 的并发执行,同时新增了光线追踪 RT Core。

Warp 是线程束,逻辑上所有 Thread 并行执行,但是从硬件的角度讲并不是所有的 Thread 能够在同一时刻执行,因此引入 Warp。Warp 是 SM 基本执行单元,一个 Warp 包含 32 个并行 Thread(warp_size=32),这 32 个 Thread 执行 SIMT(Single Instruction Multiple Thread)指令模式。

也就是说,所有的 Thread 以锁步的方式执行同一条指令,但是每个 Thread 会使用各自的 Data 执行指令分支。如果在 Warp 中没有 32 个 Thread 需要工作,那么 Warp 虽然还是作为一个整体运行,但这部分 Thread 是处于非激活状态。此外,Thread 是最小的逻辑单位,Warp 是硬件执行单位。

CUDA 基本概念

2006 年 11 月,NVIDIA 推出 CUDA(Compute Unified Device Architecture),通用并行计算架构(Parallel Computing Architecture)和编程模型(Programming Model),利用 GPU 的并行处理能力,将 GPU 用作通用并行计算设备,以加速各种计算任务,而不仅限于图形处理。

CUDA 编程模型允许开发人员在 GPU 上运行并行计算任务,基于 LLVM 构建了 CUDA 编译器,开发人员可以使用 CUDA C/C++语言编写并行程序,通过调用 CUDA API 将计算任务发送到 GPU 执行。CUDA 编程模型包括主机(CPU)和设备(GPU)之间的协作,此外还提供了对其它编程语言的支持,比如 C/C++,Python,Fortran 等语言,支持 OpenCL 和 DirectCompute 等应用程序接口。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

CUDA 在软件方面由一个 CUDA 库、一个应用程序编程接口(API)及其运行库(Runtime)、两个较高级别的通用数学库,即 CUFFT 和 CUBLAS 组成。CUDA TOOLKIT 包括编译和 C++核,CUDA DRIVER 驱动 GPU 负责内存和图像管理。CUDA-X LIBRARIES 主要提供了机器学习(Meachine Learning)、深度学习(Deep Learning)和高性能(High Performance Computing)计算方面的加速库,APPS & FRAMEWORKS 主要对接 Tensorflow 和 Pytorch 等框架。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

CUDA 线程层次结构

CUDA 最基本的执行单位是线程(Thread),图中每条曲线可视为单个线程,大的网格(Grid)被切分成小的网格,其中包含了很多相同线程数量的块(Block),每个块中的线程独立执行,可以通过本地数据共享实现数据交换同步。因此对于 CUDA 来讲,就可以将问题划分为独立线程块,并行解决的子问题,子问题划分为可以由块内线程并行协作解决。

CUDA 引入主机端(host)和设备(device)概念,CUDA 程序中既包含主机(host)程序也包含设备(device)程序,host 和 device 之间可以进行通信,以此来实现数据拷贝,主机负责管理数据和控制程序流程,设备负责执行并行计算任务。在 CUDA 编程中,Kernel 是在 GPU 上并行执行的函数,开发人员编写 Kernel 来描述并行计算任务,然后在主机上调用 Kernel 来在 GPU 上执行计算。

代码 cuda_host.cpp 是只使用 CPU 在 host 端实现两个矩阵的加法运算,其中在 CPU 上计算的 kernel 可看作是加法运算函数,代码中包含内存空间的分配和释放。

  • CUDA 编程基本概念

线程(Thread):CUDA 的最基本执行单位。在 GPU 上,大量的线程可以同时执行,从而实现并行计算。

块(Block):多个线程组成块。块是 CUDA 编程中的一个重要概念,它允许程序员组织和管理线程。

网格(Grid):由多个块组成。网格是 CUDA 程序在 GPU 上执行时的顶层结构。

主机端(Host):通常指 CPU 及其内存,负责控制程序的执行流程、数据的管理以及与设备的通信。

设备端(Device):指 GPU 及其内存,负责执行并行计算任务

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1637064.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

基本STL使用

一 、关于vector 在STL中有一个称为vector的数据结构&#xff0c;可以用来代替数组。 定义Book特性 private:vector<string> shelf_books;Notic : 类中不能使用类似的定义&#xff1a;vector<sttring> shelf_boos( 10 ); 定义Book方法 public:void setName(str…

平面模型上提取凸凹多边形------pcl

平面模型上提取凸凹多边形 pcl::PointCloud<pcl::PointXYZ>::Ptr PclTool::ExtractConvexConcavePolygons(pcl::PointCloud<pcl::PointXYZ>::Ptr cloud) {pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered(new pcl::PointCloud<pcl::PointXYZ>);p…

概述CoAP协议

目录 概述 1 认识CoAP协议 2 CoAP的消息 2.1 CoAP消息类型 2.2 可靠传输和不可靠传输 2.2.1 可靠传输 2.2.2 不可靠消息 2.3 Request/Response Model 3 CoAP消息的格式 3.1 格式介绍 3.2 协议分析 4 CoAP URL 4.1 coap URI Scheme 4.2 coaps URI Scheme 5 Co…

Pytorch GPU版本安装

一、背景 记录一下安装Pytorch GPU版本过程。 由于手残&#xff0c;卸载了电脑上的显卡驱动&#xff0c;现在我连显卡类型是啥都不知道了。 总体思路&#xff1a;安装显卡驱动->安装cuda->安装pytorch库 二、安装显卡驱动 2.1 查看本地显卡型号 通过「DirectX 诊断工具…

基于模板的图像拼接02

基于模板的图像拼接_图像拼接算法模板匹配-CSDN博客 之前的代码在计算模板位置后&#xff0c;高度方向上的值调整时不对。 if height_dst matchRight_H: matchRight imageRight[max_loc[1] - left_height_begin: height_Right, max_loc[0]:width_Right] elif hei…

【全网首发】2024五一数学建模ABC题保奖思路(后续会更新)

一定要点击文末的卡片哦&#xff01; 1&#xff09;常见模型分类 机理分析类&#xff1a;来源于实际问题&#xff0c;需要了解一定的物理机理&#xff0c;转化为优化问题。 运筹优化类&#xff1a;旨在找到使某个目标函数取得最大或最小值的最优解,对于机理要求要求不高&…

QT之信号和槽

在刚刚了解Qt的时候&#xff0c;为了通过按钮显示 hello world 的时候曾说明过信号与槽&#xff0c;虽然没有细说&#xff0c;不过也算是接触过。 而本文就会细细说明什么是 Qt 的信号与槽。 概念初识 在 linux 学进程相关的内容的时候&#xff0c;曾了解过信号是操作系统控…

【分治算法】【Python实现】整数划分问题

文章目录 [toc]问题描述分治算法Python实现 个人主页&#xff1a;丷从心 系列专栏&#xff1a;分治算法 学习指南&#xff1a;Python学习指南 问题描述 将正整数 n n n表示成一系列正整数之和&#xff0c; n n 1 n 2 ⋯ n k ( n 1 ≥ n 2 ≥ ⋯ ≥ n k ≥ 1 , k ≥ 1 ) …

【蓄水池问题】太 nice 了!我中奖啦!

小伙伴们中过奖么&#xff1f; 是不是都是 中奖绝缘体 呢&#xff1f; 今天我们就来聊一聊关于中奖的 概率 问题~ 先思考两个问题 如果让你从规模为 N 的数据序列中&#xff0c;随机选取出 k 个不重复的数据&#xff0c;你会怎么做呢&#xff1f; 是不是很简单&#xff0c…

商务口才的谈话技巧(3篇)

商务口才的谈话技巧&#xff08;3篇&#xff09; 商务口才的谈话技巧&#xff08;一&#xff09; 在商务沟通中&#xff0c;有效的谈话技巧至关重要。首先&#xff0c;倾听是建立信任和理解的基础。真正聆听对方的观点和需求&#xff0c;不仅能让对方感受到尊重&#xff0c;还能…

C++协程库封装

操作系统&#xff1a;ubuntu20.04LTS 头文件&#xff1a;<ucontext.h> 什么是协程 协程可以看作轻量级线程&#xff0c;相比于线程&#xff0c;协程的调度完全由用户控制。可以理解为程序员可以暂停执行或恢复执行的函数。将每个线程看作是一个子程序&#xff0c;或者…

代码随想录算法训练营第59天|503.下一个更大元素II、42. 接雨水

503.下一个更大元素II 题目链接&#xff1a;下一个更大元素II 题目描述&#xff1a;给定一个循环数组 nums &#xff08; nums[nums.length - 1] 的下一个元素是 nums[0] &#xff09;&#xff0c;返回 nums 中每个元素的 下一个更大元素 。 数字 x 的 下一个更大的元素 是按数…

TDengine写入2000万数据查询体验

最近在寻找时序数据库&#xff0c;想应用在公司的项目上。 上一篇文章实验了InfluxDB:windows上使用influx2.7学习,还学习了flux语言&#xff0c;最后发现宽表查询比较困难&#xff0c;就放弃了&#xff0c;于是决定试试国产时序数据库TDengine 参考 官方文档&#xff1a;htt…

OpenSSH 漏洞补丁更新笔记

OpenSSH 漏洞补丁更新笔记 相关背景OpenSSH 8.8 以后版本弃用RSA 以及影响centos 更新openssh9.7p1通过rpm包进行安装 Ubuntu更新openssh-9.5p1前置条件下载的源码包导入服务器后操作 相关背景 客户通过第三方扫漏工具发现服务器centos8和Ubuntu22.04有OpenSSH 相关高危漏洞 扫…

Linux 第十八章

&#x1f436;博主主页&#xff1a;ᰔᩚ. 一怀明月ꦿ ❤️‍&#x1f525;专栏系列&#xff1a;线性代数&#xff0c;C初学者入门训练&#xff0c;题解C&#xff0c;C的使用文章&#xff0c;「初学」C&#xff0c;linux &#x1f525;座右铭&#xff1a;“不要等到什么都没有了…

【C#】基础知识

0.参考 C#语言入门详解 1.几种打印hello_world的方式 1.1 console控制台 新建一个console&#xff0c;直接打印&#xff1a; Console.WriteLine("Hello_world");启动一闪而过&#xff0c;在vs调试中选择开始执行不调试&#xff08;without debug&#xff09;。 …

el-tabs作为子组件使用页面空白

文章目录 前言一、问题展示二、源码分析三、解决方案 前言 如果el-tabs是子组件&#xff0c;父组件传值value / v-model为空字符&#xff0c;这个时候在watch中监听value / v-model就会发现监听的数据会被调用为‘0’。一定是作为子组件引用&#xff0c;且在watch进行监听&…

5.C++动态内存管理(超全)

目录 1 .C/C 内存分布 2. C语言中动态内存管理方式&#xff1a;malloc/calloc/realloc/free 3. C内存管理方式 3.1 new/delete操作内置类型 3.2 new和delete操作自定义类型 3.3 operator new函数 3.4 定位new表达式(placement-new) &#xff08;了解&#xff09; 4. 常…

开发一个语音聊天社交app小程序H5需要多少钱?

社交&#xff0c;即时通讯APP系统。如何开发一个社交App||开发一个即时通信应用是一项复杂而充满挑战的任务&#xff0c;需要考虑多个技术、开发时间和功能方面的因素。以下是一个概要&#xff0c;描述了从技术、开发时间和功能角度如何开发这样的应用&#xff1a; 1. 技术要点…

Centos7.9系统MySQL5.7.32升级为5.7.44(生成环境操作)

1.背景 由于客户进行等保漏扫和渗透&#xff0c;生成环境mysql数据库被扫描出了 高危漏洞。 如图&#xff1a;部分漏洞 查看漏洞详细信息&#xff0c;建议升级到指定版本解决&#xff1a; 说明&#xff1a; 本文仅适合使用当前数据库为 RPM 安装方式 2.升级前准备 查看环…