Python数据分析大作业(ARIMA 自回归积分滑动平均模型) 4000+字 图文分析文档 销售价格库存分析+完整python代码

news2024/11/24 18:33:23

资源地址:Python数据分析大作业 4000+字 图文分析文档 销售分析 +完整python代码

完整代码分析

同时销售量后1000的sku品类占比中(不畅销产品)如上,精品类产品占比第一,达到66.7%,其次是香化类产品,占比11.90%,远远小于精品类产品,酒水类产品占比7.3%,有税商品免税其他商品和电子类产品分别占比6.40%、6.40%、1.3%,

将数据按照毛利进行排序,毛利前1000和后1000的sku品类占比如下,

可以发现按照毛利排序,各品类的sku数量占比区别不如按照销量排序的各品类sku数量占比那么大,其中按照毛利排序的sku前1000,品类sku占比最大的是香化类,其次是精品类,它们占比分别达到33.2%和31.5%,其中占比最小的是免税商品其他类,说明该品类的毛利率相对较小,而毛利率较大的为精品类和香化类,这和品牌有一定关系,人民生活正在慢慢变好,精品类商品能满足大部分人民的精致生活,同时香化类产品受众多为女性,商品需求大,毛利也高。对于毛利sku后1000的商品,其中有税商品和精品类和香化类商品仍然占领霸主位置,原因可能由于对于精品类和香化类的部分商品经常打折来吸引顾客,所以这部分商品的毛利较低,sku后1000商品品类占比最大的为有税商品,占比达到33.00%,由于考虑到税额加上顾客的消费能力,这部分的商品毛利相对低一点,同时香化类和精品类占比也达到25.9%和25.6%,占比最小的为电子产品,占比为1.3%。

分析sku销量前1000和销量后1000商品的毛利率,得到毛利率的条形图如下,

从上图可以发现sku前1000商品的毛利率大概在0.2到0.5左右,而sku后1000的商品的毛利率大部分在0.4到0.5左右,可以认为销量高的商品其毛利率未必会比销量低的商品的毛利率高,这给我们销售商品很有启示,对于商品售卖我们未必要一定去打折扣吸引顾客(当然折扣对部分顾客有一定吸引力),对于畅销品我们就没必要去打折,因为商品本身可能就供不应求,这样通过畅销品的提高整个商场的利润,对于不畅销商品,我们也不一定要去打折,对于不畅销商品,可能其受众较小,而对于那部分受众来说,这对于其他人最不畅销的商品对于他们来说可能是必需品,所以也没必要打折,通过保证毛利,也能提高商场的利润。

价格分析

首先将各品类下的大类进行区间划分,拟定划分6个区间,然后计算每个品类下每个大类的每个价格区间的个数,各品类商品的大类价格区间条形图如下,

上面4个品类,精品品类、免税其他品类、香化品类、有税品类的价格区间如图,取免税其他品类进行分析说明,首先免税其他品类下面有六个大类,对这六个大类进行区间划分,划分6个价格区间,其中条形图的高度为对应区间的个数,对于所有的大类,其位于低价位的价格区间个数是最多的,说明大多数人的消费能力有限,会偏向于低价位的商品,对于精品品类,其类下的高级珠宝在各个价格区间中价格区间个数相对其他大类会更多一点,说明高级珠宝受价格的影响相对较小,因为高级珠宝的受众基本是固定的,这些顾客不管价格高或者低都是能够消费的起,所以价格对他们影响不大。对于香化类,价格区间个数很大一部分都在最低价格区间内,随着化妆品行业兴起,很多爱美的顾客都选择购买化妆品,但大多数人的消费能力有限,所以低价格的化妆品成为了畅销产品,而且低价格的化妆品价格区间个数远远高于高价格的价格区间个数。对于酒水和电子品类,其对应的大类只有一个,如下所示,对于这两个品类,可以发现酒水品类的低价位远远比其他价位的多,说明便宜酒水的受众很多,而昂贵酒水受众较少,所以对于低价位酒水可以通过促销来促进购买,对于高价位酒水则可以定高价保证利润。对于电子产品,其中等价位及以下的销售区间个数比较多,相当于珠宝酒水来说,人民更愿意在电子产品上花钱,这也是科技给人们带来的便捷之处,但高价位的电子产品的区间个数仍是较少,和人们的消费习惯和消费能力有关。

接着查看各品类下的各大类的畅销产品价格区间的折扣率,这里在每一个品类中选取一个大类的价格区间折扣进行分析,对于有税品类下的个人洗护大类,其价格区间的折扣率和最畅销产品和最不畅销产品如下:

(35.877, 56.5] 0.6818181818181818

(56.5, 77.0] 0.640625

(77.0, 97.5] 1.0

(97.5, 118.0] 0.8571428571428571

(118.0, 138.5] 0.0

(138.5, 159.0] 0.5

最畅销产品价格区间(56.5, 77.0]

最不畅销产品价格区间(118.0, 138.5]

从上面可以发现最畅销产品价格区间位于低价区间,但其折扣率为0.6,算是较高了,而最不畅销的价格区间,其折扣率为0,结合前面的分析,对于低价产品,我们可以减小我们的折扣率来提高利润。对于不畅销的产品我们可以进行适当的折扣来促进购买,对于电子品类下的家居大类,其价格区间的折扣率和最畅销产品和最不畅销产品如下:

(32.326, 3875.875] 0.9583333333333334
(3875.875, 7696.5] 0.978021978021978
(7696.5, 11517.125] 0.9745347698334965
(11517.125, 15337.75] 1.0
(15337.75, 19158.375] 1.0
(19158.375, 22979.0] 1.0
最畅销价格区间(7696.5, 11517.125]

最不畅销价格区间(19158.375, 22979.0]

和有税品类不同的是,最不畅销产品价格区间为最贵的价格区间,而且最不畅销的产品价格区间达到了百分百,而最畅销产品的价格区间位于中等价位价格区间,折扣率也比较高。说明对于电子产品这一类相当难以进行修补的产品来说,人们更倾向于贵一点的,可能这和人们的消费理念和消费能力有关, 一般来说电子产品作为非易换品,人们更倾向于买好一点,用久一点,所以出现最畅销的反而不是价格最低的。对于精品品类下的服装大类其价格区间的折扣率和最畅销产品和最不畅销产品如下:

(38.19, 410.342] 0.08333333333333333

(410.342, 780.273] 0.09401709401709402

(780.273, 1150.205] 0.016129032258064516

(1150.205, 1520.137] 0.058823529411764705

(1520.137, 1890.068] 0.3333333333333333

(1890.068, 2260.0] 0.11764705882352941

最畅销产品价格区间(780.273, 1150.205]

最不畅销产品价格区间(1520.137, 1890.068]

同上面一样,最畅销产品价格区间位于非位于最低价价格区间,而最不畅销的产品价格区间位于中间价位价格区间,因为对于服装类来说,每一个人都有需求,而对于消费能力不够的消费者来说,他们大多会选择网购而不会选择去商城购物,而大多数人选择去商城购买衣服的都是具有一定的消费能力,但他们消费能力也是有限,所以最畅销的价格区间是中等价位偏下,而中等价位偏上的价格区间对于消费能力不足的消费者来说性价比不高,而对于消费能力足够的消费者来说又不上档次,所以这个价位处于一个比较尴尬的位置。对于这个区间的产品可以稍微的促销提高销量。

对于酒水品类下的进口酒水大类其价格区间的折扣率和最畅销产品和最不畅销产品如下:

(6.66, 9378.333] 0.27345591702027344
(9378.333, 18722.667] 1.0
(18722.667, 28067.0] 0.05555555555555555
(28067.0, 37411.333] 0.0
(37411.333, 46755.667] 0.0
(46755.667, 56100.0] 0.0
最畅销价格区间(6.66, 9378.333]
最不畅销价格区间(9378.333, 18722.667]

和上面品类不一样的是,最畅销的产品位于最低价价格区间,由于低价酒类的受众较多,而10000元以下的酒对于普通消费人群来说也不便宜,所以这个价位最畅销,同时折扣也较低,对于最不畅销的商品,是在第二低价价格区间,折扣率为1,而最高价位的酒折扣率为0反而不是最不畅销的价格区间,因为高价酒的受众较少,同时他们也有能力进行消费,所以不需要进行折扣。而最不畅销的价格区间是不受低端客户和高端客户的喜爱,所以不畅销。

对于香化品类下的个人洗护大类其价格区间的折扣率和最畅销产品和最不畅销产品如下:

(59.07, 215.0] 0.09813084112149532
(215.0, 370.0] 0.0729483282674772
(370.0, 525.0] 0.10810810810810811
(525.0, 680.0] 0.0425531914893617
(680.0, 835.0] 0.25
(835.0, 990.0] 0.10526315789473684
最畅销产品价格区间(215.0, 370.0] 
最不畅销产品价格区间(680.0, 835.0]

同上面一个,畅销产品为虽为低价产品,但其并未是最低价产品,该产品折扣率低,同时不畅销产品为高价产品,但也并非是最高价区间产品,折扣率也低。说明价格并不是决定畅销和不畅销的唯一因素,对于洗护类产品,由于关乎自身皮肤健康,所以相当中等价位的产品比较畅销,对于免税其他商品的书写工具大类其价格区间的折扣率和最畅销产品和最不畅销产品如下:

(5.879, 2215.883] 0.24
(2215.883, 4412.707] 0.36363636363636365
(4412.707, 6609.53] 0.0
(6609.53, 8806.353] 0.3333333333333333
(8806.353, 11003.177] 0.0
(11003.177, 13200.0] 0.0
最畅销价格区间(5.879, 2215.883]
最不畅销价格区间 (8806.353, 11003.177]
对于书写工具,由于需求较大,人民对其没有过多要求,能写就行,所以人民会倾向于较低价的产品,所以其最畅销的价格区间为最低价价格区间,而最不畅销的是倒数第二贵的价格区间,同样这个区间基本只有有强大消费能力的人去购买,而这类人往往会挑选最贵的去买,所以其成为最不畅销的产品价格区间。

库存分析

 资源地址:Python数据分析大作业 4000+字 图文分析文档 销售分析 +完整python代码

分析各品类下各大类的sku数,以条形图展现,如下

通过分析各大类的sku数可以判断哪些大类商品需要更多的库存,哪些大类商品需要的库存少,对于有税商品中的干杂大类,香化品类中的护肤大类,免税其他品类的玩具大类以及精品品类下的珠宝和钟表大类,他们sku数比较多,可以多放些库存以免缺货。

接着根据28法则,分析各品类下sku金额以及累计金额,结果如下,

从上面的表中可以发现,免税其他品类和有税品类的前20%的商品金额大概占比总的商品金额的60%,而其他四个品类大概占比了80%,符合28法则。

分析每个品类下的期初期末以及平均库存,结果如下

免税其他品类的营养保健类、干杂类库存较多,而期初库存全为0,根据上面的分析,书写工具和玩具的sku数较多,可以加大这两类库存

进口酒类期初库存也为0,可以加一些期初库存

精品品类的珠宝和钟表类的sku数较多,而上方珠宝的库存较少,可以加大该类的品类库存

对于家居品类,可以加一些期初库存。

对于有税商品,干杂类珠宝sku数较多,可以加大珠宝类的库存,根据上图,珠宝类的库存较少,可以加强库存。

标题

对于香化品类,护肤和香水大类的sku数较多,而上图香水库存较少,可以加强该库存。

使用价格区间来分析库存。

通过分析最畅销库存以及最不畅销库存来调配商品。由于品类过多,选取一部分分析,结果如下。

 有税品类的个人洗护类:

                

电子品类:

精品类

酒水类

对于这六个品类,除了有税品类下的个人洗护类的不畅销价格区间的库存相对多一点外,其他的最不畅销的价格区间的商品库存都比最畅销的商品库存低许多,说明在不同价格区间的库存来说,库存的配比没有问题,对于精品类,由于其占商品销售很大一部分,所以需要着重的分析,首先需要提高畅销产品的库存,但不一定要减小不畅销产品的库存,因为对于精品类来说,其最不畅销的产品销量可能比其他的类要高,所以可以选择增大畅销产品的库存,同时不动非畅销品的库存。而其他四个看起来正常,他们的库存远远多于最不畅销产品的库存量,在一定程度上认为是合理的。

分析有效库存的各品类的库存数

上图为总库存,有效库存,无效库存的条形图,发现有效库存占总库存的绝大多数,接下来分析不同品类下的库存数量,

有税品类的库存如下,有税品类下干杂类sku最多,其库存也最多,库存配比无误

电子类,电子类占销售比例也较大,其库存也算较多,库存配比无误,

精品类库存图如下,精品类下钟表和珠宝的sku较多,而下面珠宝的库存不多,可以适当提高其库存,相对减少其他库存

 资源地址:Python数据分析大作业 4000+字 图文分析文档 销售分析 +完整python代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1634036.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

在Android中,如何通过Kotlin协程处理多个API调用

在Android中,如何通过Kotlin协程处理多个API调用 在Android开发中,如何使用Kotlin协程处理多个API调用的示例呢?假设我们已经对Kotlin协程有了一定的了解,包括定义、简单用例和示例等。现在,让我们来看一些真实的Andr…

AD21技巧[更加便捷的DRC检查][把线框转成Keep-Out Layer板框]

AD10用了好久,之所以换到AD21并不是因为AD10功能不够强,而且因为别人用高版本设计的软件到我这里竟然打不开了,这个是我不能够接受的,所以开始使用AD21,使用之后发现AD21好多使用习惯和AD10有很大的区别! 更加便捷的DRC检查 本文摘录于:https://www.cnblogs.com/U…

[Android14] SystemUI的启动

1. 什么是System UI SystemUI是Android系统级应用,负责反馈系统及应用状态并与用户保持大量的交互。业务主要涉及的组成部分包括状态栏(Status Bar),通知栏(Notification Panel),锁屏(Keyguard),控制中心(Quick Setting)&#xff…

基于H.264的RTP打包中的组合封包以及分片封包结构图简介及抓包分析

H.264视频流的RTP封装类型分析: 前言: NULL Hearder简介(结构如下): ---------------|0|1|2|3|4|5|6|7|--------|F|NRI| Type |--------------- F:forbidden_zero_bit, 占1位,在 H.264 规范中规定了这…

RustGUI学习(iced)之小部件(四):如何使用单选框radio部件?

前言 本专栏是学习Rust的GUI库iced的合集,将介绍iced涉及的各个小部件分别介绍,最后会汇总为一个总的程序。 iced是RustGUI中比较强大的一个,目前处于发展中(即版本可能会改变),本专栏基于版本0.12.1. 概述…

【酱浦菌-爬虫技术细节】解决学术堂爬虫翻页(下一页)问题

首先我们通过css选择器获取页码信息,这里的css选择器,选择的是含有a标签的所有li标签,代码如下: li html_web.css(div.pd_c_xslb_left_fenye ul li>a) for li in li:li_url li.css(a::attr(href)).get()li_num li.css(a::t…

基于FPGA的数字信号处理(6)--如何确定Verilog表达式的符号

前言 尽管signed语法的使用能带来很多便利,但同时也给表达式的符号确定带来了更多的不确定性。比如一个有符号数和一个无符号数的加法/乘法结果是有符号数还是无符号数?一个有符号数和一个无符号数的比较结果是有符号数还是无符号数?等等。接…

IOT病毒分析

前言: 最近审计报警日志,发现了一个IOT病毒,利用的是CVE-2023-1389漏洞扫描tplink,进行攻击,有点意思,拿出来分析下。 发现: 查看流量日志,发现了一个有问题的访问: 访…

【架构】后端项目如何分层及分层领域模型简化

文章目录 一. 如何分层1. 阿里规范2. 具体案例分析 二. 分层领域模型的转换1. 阿里规范2. 模型种类简化分析 三. 小结 本文描述后端项目中如何进行分层,以及分层领域模型简化 一. 如何分层 1. 阿里规范 阿里的编码规范中约束分层逻辑如下: 开放接口层&#xff1a…

CSS实现各种优惠券效果

一、左半圆效果 <style style"text/css">.coupon {width: 240px;height: 100px;margin-top: 15px;background-color: #ff6347;-webkit-mask: radial-gradient(circle at left center, transparent 20px, red 20px); } </style><div class"coupon…

摩根大通推出创新工具 FlowMind,引领金融自动化新变革

近日&#xff0c;摩根大通人工智能研究部推出了一款极具创新性的工具——FlowMind&#xff0c;为金融行业带来了全新的工作模式和效率提升。 FlowMind 能够自动化金融工作流程&#xff0c;在信贷审批、风险评估、合规监测等重要任务中发挥着关键作用。它利用 GPT 自动生成工作…

张鸣独到政治观,规矩与自信新解

张鸣独解规矩与自信&#xff0c;社政新影响揭秘。张鸣独到政治观&#xff0c;规矩与自信新解在当今社会政治的大背景下&#xff0c;学者张鸣的每一次公开演讲无疑都是一次思想的盛宴。最近&#xff0c;他就当前的社会政治问题提出了自己独特的观点&#xff0c;特别是他对规矩和…

【网络原理】UDP协议 | UDP报文格式 | 校验和 | UDP的特点 | 应用层的自定义格式

文章目录 一、UDP协议1.UDP的传输流程发送方接收方 2.UDP协议报文格式&#xff1a;长度受限校验和如何校验&#xff1a;CRC算法&#xff1a;循环冗余算法md5算法&#xff1a; 2.UDP的特点 二、开发中常见的自定义格式1.xml&#xff08;古老&#xff09;2.json&#xff08;最流行…

头歌:Spark任务提交

第1关&#xff1a;spark-submit提交 任务描述 相关知识 spark-submit参数 计算圆周率 编程要求 测试说明 任务描述 本关任务&#xff1a;学会将程序提交到集群上执行。 相关知识 为了完成本关任务&#xff0c;你需要掌握&#xff1a;1.了解spark-submit的参数。2.学会提交Spar…

双目深度估计原理立体视觉

双目深度估计原理&立体视觉 0. 写在前面1. 双目估计的大致步骤2. 理想双目系统的深度估计公式推导3. 双目标定公式推导4. 极线校正理论推导 0. 写在前面 双目深度估计是通过两个相机的对同一个点的视差来得到给该点的深度。 标准系统的双目深度估计的公式推导需要满足:1)两…

按键的软件消抖

1.当出现物理情况比如单片机不小心摔了会发生灯亮的情况&#xff0c;所以我们得增加个延迟函数 2.这个错误是缺少头文件#include <intrins.h> 3. #include "reg52.h" #include <intrins.h>sbit key2 P2^0; sbit key1 P2^1; sbit ledone P3^7;voi…

稳扎稳打 部署丝滑 开源即时通讯(IM)项目OpenIM源码部署流程(linux windows mac)

背景 OpenIM包含多个关键组件&#xff0c;每个都是系统功能必不可少的一部分。具体来说&#xff0c;MongoDB 用于持久化存储&#xff1b;Redis 用作缓存&#xff1b;Kafka 用于消息队列&#xff1b;Zookeeper 用于服务发现&#xff1b;Minio 用于对象存储。这些组件的众多可能会…

用OpenCV先去除边框线,以提升OCR准确率

在OpenCV的魔力下&#xff0c;我们如魔法师般巧妙地抹去表格的边框线&#xff0c;让文字如诗如画地跃然纸上。 首先&#xff0c;我们挥动魔杖&#xff0c;将五彩斑斓的图像转化为单一的灰度世界&#xff0c;如同将一幅绚丽的油画化为水墨画&#xff0c;通过cv2.cvtColor()函数的…

【多级缓存】多级缓存OpenResty,Canal,nginx本地缓存

多级缓存 安装OpenRestyOpenResty入门OpenResty获取请求参数OpenResty向tomcat服务器发送请求 在nginx与tomcat端之间添加redis缓存Redis本地缓存缓存同步缓存同步策略基于Canal的异步通知安装Canal Canal客户端 安装OpenResty OpenResty是一个基于 Nginx的高性能 Web 平台&am…

[iOS]使用CocoaPods发布私有库

1.创建私有 Spec 仓库 首先&#xff0c;需要一个私有的 Git 仓库来存放你的 Podspec 文件&#xff0c;这个仓库用于索引你所有的私有 Pods。 在 GitHub 或其他 Git 服务上创建一个新的私有仓库&#xff0c;例如&#xff0c;名为 PrivatePodSpecs。克隆这个仓库到本地&#xf…