手把手教你在本机安装Stable Diffusion秋叶整合包

news2024/11/24 12:01:16

因为网上讲部署的文章挺多的,所以本来不打算写这个,但是有些网友提出了要求,另外我也准备总结下在AI绘画方面的一些经验,从经验完整性上考虑,还是得有这部分的内容。


整合包对非技术出身的同学比较友好,因为秋叶大佬把相关的东西已经都整合好了,只需要点点点就行了。当然懂编程的同学就更没有问题了。

准备

为了保证AI绘画的效率,建议在本机安装Nvidia独立显卡,也就是俗称的N卡,并且显存要达到6G以上。推荐选择RTX40系列及以上的显卡型号,最低也要选择RTX30系列。如果你没有N卡,可以使用CPU进行图形计算,但是性价比较低,出图速度较慢。此外,还需要确保CPU性能足够高,并且搭配至少16G的内存。总的来说,如果只是进行简单的图形处理或者体验,可以使用CPU,但不适合搞AI绘画。

看到这里,有的同学可能会有点失望了,没有这么好的机器就玩不了AI绘画吗?别担心,我们还可以使用云主机,下一篇我会分享使用云主机的姿势。

安装前看自己显卡型号的方法:

1、电脑左下角点击WIndows窗口图标,然后点击“设置”。

2、在打开的窗口中,搜索“设备管理器”,找到后点击打开。

3、找到“显示适配器”,就可以看自己的显卡了。如果是Nvidia的显卡,就会有这几个字。我这个演示的电脑是不是N卡,所以只能以CPU的方式运行。

下载

所有需要的东西都放到网盘里边了,大家自行下载即可:
文末领取

为了方便大家搞AI绘画,这里边不仅包含了秋叶大佬的整合包,还有很多的大模型、Lora模型、ControlNet模型等等,总计大约有100多G,全部下载下来会很慢。

但是没必要都下载下来再安装,先把最后两个文件下载下来就行了,鉴于百度网盘限速,可能也需要几个小时,大家耐心等待,磨刀不误砍柴工!

启动

下载完上边说的两个文件就可以启动。

1、安装驱动。这个整合包是由 .NET6 (就是一个软件基础平台)驱动的, 大家需要先安装“启动器运行依赖-dotnet-6.0.11.exe”这个文件。

安装过.NET6的同学可以跳过这一步,不懂的再安装一遍也没问题。

2、解压“sd-webui-aki-v4.zip”。自己选择一个磁盘,比如D盘,直接解压到D盘根目录就行了。然后进入解压后的文件夹 sd-webui-aki-v4 。

双击“A启动器.exe”,它会自动下载一些最新的程序文件。我这里还弹出了“设置Windows支持长路径”,确定就可以了。

启动成功后,会打开下边这个界面。如果啥都做完了,也没打开这个界面,就再次双击这个文件,一般就打开了,还打不开的找我。

在这个启动界面中点击右下角的“一键启动”按钮。

然后会弹出一个控制台窗口,做一些初始化的操作,出现“Startup time …”的提示就代表启动成功了。

然后这个工具会自动在浏览器中打开SD WebUI的窗口。不小心关了的时候,也可以用 http://127.0.0.1:7860 再次打开。打开的界面如下图所示:

出图

只需要简单5步:

1、Stable Diffusion 模型:anything-v5,这个是整合包自带的默认大模型,不用选就是它。

2、外挂VAE模型:选择 840000 这个,这东西就像个滤镜,用它出图的颜色比较丰富。

3、提示词:想要画个什么,就在这里写,需要是英文。

4、反向提示词:不想要在图片中出现什么,就把它写在这里,这里填写的“EasyNegative”是整合包附带的一个通用反向提示词的代号。

5、其它参数先不管,点击“生成”按钮。

6、生成速度取决于你的计算机性能,等一会就会出图了。点击可以放大,右键可以下载。

除了在这个WebUI上直接下载图片,我们还可以通过启动工具下载,如下图所示,红框圈出的就是各种生成方式保存图片的位置,单击就可以打开本机目录。

进阶

为了更好的绘图,这里介绍几个基础并且常用的概念:

模型:可以理解成一个函数,输入一些参数,得到一些返回值。只不过这里谈到的模型的参数特别多,几十亿、上百亿、上千亿。在Stable Diffusion中,我们可以简单的认为参数就是提示词、反向提示词、图片尺寸、提示词引导系数、随机数种子等等,返回值就是图片数据。

大模型:有时也称为基础模型,文件一般很大,常见的都在2G-5G。这是因为它们使用了很多的图片进行训练,累积了大量的数据。SD官方发布了一个基础模型,但是因为比较通用,兼顾的方面比较多,特点不足,所以大家一般很少使用。比如有的人喜欢二次元、有的人喜欢真实、有的人喜欢3D,用官方模型出图的效果不是最优的,所以很多组织或者个人就专门训练某方面的模型,并发布到社区给大家使用。

网盘中提供了一些大模型,大家可以去下载:

然后放到整合包的这个目录下:sd-webui-aki-v4\models\Stable-diffusion,从网盘下载的整合包中已经默认有一个大模型。

VAE模型:这个东西有点类似手机中编辑照片时的滤镜,可以处理图片的颜色和线条,让图片看起来色彩更丰富饱满。很多大模型会自带VAE模型,这时候我们就不需要再给它搭配一个VAE,当然也有不自带的,这时就需要搭配一个。上图选择的 840000 是一个常用的的VAE模型,如果你生成的图片比较灰暗,可以试试这个VAE。其实秋叶整合包提供了四个选项,如下图所示,我一般都选“自动识别”,除了 840000,animevae 是专门优化二次元图片的。一般这两个VAE模型就够了。

Lora模型:这是一种基于大模型的风格模型,比如我们画小姐姐的时候,可以用一些Lora模型来控制人物的服装、头饰;生成机械四肢的时候,可以用一些Lora模型来强化肢体上覆盖的机甲样式;画风景图的时候,可以用一些Lora模型来控制绘画的风格。

可以从网盘中的这两个目录下载:

下载后放到整合包的这个目录下:sd-webui-aki-v4\models\Lora,初始状态下里边是空的。

提示词:对图像的描述,也就是想画一幅什么样的画。比如我上边使用的:a girl,但是这个提示词过于简单,AI虽然画出了一个女孩,但是他不知道你脑子里的女孩长什么样子,如果要画的更符合你的需求,你还要告诉他更多细节才好,比如女孩的头发是什么颜色、穿着什么衣服、站着还是坐着、在户外还是室内等等。提示词在AI绘画中特别重要,后边我会专门分享如何写好提示词。

反向提示词:不想在图片中出现的东西,比如树、桌子、6根手指、缺胳膊断腿等等,在上边的示例中我使用了“EasyNegative”,这是一个嵌入模型的代号,可以认为它代表了很多常见的反向提示词,使用它就不用一个个输入了,也不占用过多的提示词。

随机数种子:上边没有演示这个参数,但是它是AI绘画的魅力之一。即使其它的参数都相同,只要随机数不同,每次生成就会出来不同的图片,创意几乎无穷无尽。

先说这么多吧,学习重在持之以恒,不要撑着,后边我们慢慢再讲。

更新

Stable Diffusion WebUI 经常会修复一些BUG和增加新功能,在这里可以把它更新到最新版本。可以更新本体,也可以更新一些扩展插件。

写在最后

感兴趣的小伙伴,赠送全套AIGC学习资料,包含AI绘画、AI人工智能等前沿科技教程和软件工具,具体看这里。

AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。

在这里插入图片描述

一、AIGC所有方向的学习路线

AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

在这里插入图片描述

在这里插入图片描述

二、AIGC必备工具

工具都帮大家整理好了,安装就可直接上手!
在这里插入图片描述

三、最新AIGC学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
在这里插入图片描述
在这里插入图片描述

四、AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1632925.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Linux学习(一)

笔者给各位读者的建议是每天背 30 个在电脑上看到的不认识的单词 1) 文件系统 提供计算机存储信息的结构,信息存储在文件中,文件主要存储在计算机的内部硬盘里,在目录的分层结构中组织文件。文件系统为操作系统提供了组织管理数据的方式。 …

银河麒麟V10 ARM64 离线安装 新版Docker

查询当前发行版本 nkvers下载最新版本 卸载旧依赖 卸载已经安装的老版本 yum remove docker \containerd.io \docker-runc \docker-client \docker-client-latest \docker-common \docker-latest \docker-latest-logrotate \docker-logrotate \docker-engine \docker-compo…

kubernetes 1.30.0 Containerd 离线搭建

准备 准备两台主机 主机名IPCPU架构mx-text-01192.168.0.222ARM64mx-text-02192.168.0.223ARM64 主机要求: 2Core 2G RAM 配置主机名映射 添加映射 192.168.0.222 mx-test-01 192.168.0.223 mx-test-02cat /etc/hosts关闭SELinux setenforce 0sed -i s/^SELI…

电商独立站||跨境电商独立站网站搭建|功能系统搭建||API接口接入

搭建多语言跨境电商独立站系统 前台主要功能模块 短信接口 第三方登陆 支付方式 会员中心 代购订单列表 - new 会员签到 -1000(1) new 支付密码 ---1000 国内流程 -----5000 new 订单运单多退少补 -1000 未付款运单取消功能 - 修改运单运输方式 -----1000 年费会员 -----3000 …

TimeoutException,带宽影响连接超时

在做压测试过程中发现本机测试正常,线上服务器报错如下: io.lettuce.core.RedisCommandTimeoutException: Command timed out after 15 second(s) 查看公网带流量情况: 服务器带宽 服务器的公网带宽配置为10Mbps,当服务器的出网…

解决Blender导出FBX文件到Unity坐标轴错误的问题

发现Blender的模型导入到Unity里面有问题,简单研究了下发现是坐标系不同,Unity使用的是左手坐标系,Blender使用的是右手坐标系 。 下面直接将如何解决 首先忽略Blender的右手坐标系以及Z轴朝上的事,依照unity坐标系情况修改模型物体的旋转,以Blender猴…

Linux服务器安装Anaconda并运行Python程序

目录 1. Linux服务器安装Anaconda1.1 下载Anaconda安装包1.2 安装Anaconda 2. 添加Conda环境变量3. Conda常用操作3.1 创建虚拟环境3.2 激活环境3.3 删除环境3.4 其他常用命令 4. 安装合适版本的Pytorch5. Linux服务器运行Python程序5.1 前端运行5.2 后台挂载5.3 后台进程 6. 一…

苹果和OpenAI再续前缘,iOS 18会是颠覆级的吗?|TodayAI

据彭博社最新报道,苹果公司已经与人工智能领域的先锋企业OpenAI重启了对话,双方目前正在讨论一项可能的合作,以将OpenAI的生成式人工智能技术整合到苹果即将推出的iOS 18操作系统中。这一举措表明,苹果正加速其在人工智能技术上的…

第G9周:ACGAN理论与实战

🍨 本文为🔗365天深度学习训练营 中的学习记录博客🍖 原作者:K同学啊 | 接辅导、项目定制🚀 文章来源:K同学的学习圈子 上一周已经给出代码,需要可以跳转上一周的任务 第G8周:ACGAN任…

什么是视频号小店?小店怎么做?详细玩法流程来了

大家好,我是电商笨笨熊 视频号小店成了今年电商市场又一热门项目; 作为腾讯推出的电商,不少人曾说过,视频号小店会成为下一个风口; 那么视频号小店到底是什么,值得投入吗,又该怎么做呢&#…

[华为OD]C卷 给定一个数组,数组中的每个元素代表该位置的海拔高度 山脉的个数 200

题目: 给定一个数组,数组中的每个元素代表该位置的海拔高度。0表示平地,>1时表示属于某个 山峰,山峰的定义为当某个位置的左右海拔均小于自己的海拔时,该位置为山峰。数组起始位 置计算时可只满足一边…

AI助力后厨可视化智慧监管,让“舌尖安全”看得见

一、背景与需求分析 夏天是食物易腐败的季节,高温容易引发食品安全问题。在后厨环境中,食品安全问题可能涉及食品加工、后厨环境、食品是否被污染等方面,而不合格的食品安全管理可能导致食品中毒事件等风险,损害消费者的健康和餐…

偏微分方程算法之五点菱形差分法

目录 一、研究目标 二、理论推导 三、算例实现 四、结论 一、研究目标 上个专栏我们介绍了双曲型偏微分方程的主要算法及实现。从今天开始,我们在新的专栏介绍另一种形式偏微分方程-椭圆型的解法。 研究目标选取经典的二维椭圆型方程(也称泊松Poisso…

半导体制造工艺之分类浅述

半导体制造工艺分为逻辑制程(也叫逻辑工艺)和特殊制程(也叫特色工艺)。 1、逻辑工艺概述 随着集成电路行业沿着摩尔定律不断发展,晶体管数量增加的同时,工艺节点不断缩小。先进逻辑工艺是相对的概念,2005年全球先进逻辑工艺的工艺节点在65/55纳米,现在则变为3纳米。中…

好好聊一聊:Agent AI智能体的未来|TodayAI

​​​​​​​ 一、 引言 在当今时代,人工智能(AI)技术的快速发展正不断改变着我们的生活与工作方式。尤其是Agent AI智能体,作为AI技术中的一种重要形式,它们通过模拟人类智能行为来执行各种复杂任务,从…

sCrypt全新上线RUNES功能

sCrypt智能合约平台全新上线一键etch/mint RUNES功能! 请访问 https://runes.scrypt.io/ 或点击阅读原文体验! 关于sCrypt sCrypt是BSV区块链上的一种智能合约高级语言。比特币使用基于堆栈的Script语言来支持智能合约,但是用原生Script编…

多猫家庭吐血总结!这样选冻干真不踩雷?这几款主食冻干喂出貌美小猫

315中国之声的报道曝光了河北省邢台市南和区某宠粮代工厂的“行业秘密”,这让许多宠物主人感到震惊和不安。配料表上标明的鸡肉含量和新鲜鸡小胸含量看似可观,但背后却是用鸡肉粉替代的真相。我们养宠物是为了增添生活的乐趣,然而这些行业乱象…

实验案例二:配置Trunk,实现相同VLAN的跨交换机通信

1.实验环境 公司的员工人数已达到100人,其网络设备如图12.13所示。现在的网络环境导致广播较多 网速慢,并且也不安全。公司希望按照部门划分网络,并且能够保证一定的网络安全性 其网络规划如下: PC1和 PC3为财务部,属于 VLAN 2&…

Linux驱动开发——(九)platform设备驱动

目录 一、Linux驱动的分离 二、Linux驱动的分层 三、platform平台驱动模型简介 3.1 platform_driver结构体 3.2 device_driver结构体 3.3 platform驱动API函数 四、驱动代码 一、Linux驱动的分离 对于Linux这种庞大而复杂的系统,需要非常注重代码的重用性&a…

Docker-容器的前世今生

文章目录 Docker为什么产生?硬件虚拟化硬件虚拟化解决的问题硬件虚拟化定义硬件虚拟化技术虚拟机的优点虚拟机的缺点 操作系统虚拟化即容器容器化解决的问题容器化定义容器化技术历史 容器和虚拟机对比 Docker的发展历史Docker架构客户端服务端仓库Registry Docker重…