Hive函数详解

news2025/1/10 3:13:26

Hive 是一个建立在 Hadoop 上的数据仓库基础架构,它提供了类似于 SQL 的查询语言,称为 HiveQL,用于对存储在 Hadoop 分布式文件系统中的数据进行查询和分析。

1.函数简介

Hive会将常用的逻辑封装成函数给用户进行使用,类似于Java中的方法。

  • 好处:避免用户反复写逻辑,可以直接拿来使用。
  • 重点:用户需要知道函数叫什么,能做什么。

Hive提供了大量的内置函数,按照其特点可大致分为如下几类:单行函数、聚合函数、炸裂函数、窗口函数。

以下命令可用于查询所有内置函数的相关信息。

1)查看系统内置函数

hive> show functions;

在这里插入图片描述

2)查看内置函数用法

hive> desc function upper;

在这里插入图片描述

3)查看内置函数详细信息

hive> desc function extended upper;

在这里插入图片描述


2.单行函数

  • 单行函数的特点是一进一出,即输入一行,输出一行
  • 单行函数按照功能可分为如下几类: 日期函数、字符串函数、集合函数、数学函数、流程控制函数等。

1.算术运算函数

在这里插入图片描述

查询出所有员工的薪水后加1显示:

hive (default)> select sal + 1 from emp;

2.数值函数

数值函数是用于对数值数据进行操作和计算的函数,在 SQL 查询中经常用于执行数学运算、取值范围限制等操作。

  1. ABS(x):返回 x 的绝对值

  2. ROUND(x, d):将 x 四舍五入到 d 位小数。如果 d 被省略,则默认为 0。

hive> select round(3.3);   3
  1. CEIL(x):返回不小于 x 的最小整数,向上取整。
hive> select ceil(3.1) ;   4
  1. FLOOR(x):返回不大于 x 的最大整数,向下取整
hive> select floor(4.8);  4
  1. SQRT(x):返回 x 的平方根。

  2. POWER(x, y):返回 x 的 y 次幂。

  3. EXP(x):返回 e 的 x 次幂,其中 e 是自然对数的底。

  4. LOG(x):返回 x 的自然对数。

  5. LOG10(x):返回 x 的以 10 为底的对数。

  6. MOD(x, y):返回 x 除以 y 的余数。

  7. SIGN(x):返回 x 的符号:1 表示正数,-1 表示负数,0 表示零。

  8. RAND():返回一个随机浮点数值,范围在 0 到 1 之间。

示例:

-- 返回 -5 的绝对值
SELECT ABS(-5); -- 输出: 5

-- 将 4.8 四舍五入到最近的整数
SELECT ROUND(4.8); -- 输出: 5

-- 返回不小于 4.8 的最小整数
SELECT CEIL(4.8); -- 输出: 5

-- 返回不大于 4.8 的最大整数
SELECT FLOOR(4.8); -- 输出: 4

-- 返回 25 的平方根
SELECT SQRT(25); -- 输出: 5

-- 返回 2 的 3 次幂
SELECT POWER(2, 3); -- 输出: 8

-- 返回 e 的 2 次幂
SELECT EXP(2); -- 输出: 约为 7.389

-- 返回 100 的自然对数
SELECT LOG(100); -- 输出: 约为 4.605

-- 返回 100 的以 10 为底的对数
SELECT LOG10(100); -- 输出: 2

-- 返回 10 除以 3 的余数
SELECT MOD(10, 3); -- 输出: 1

-- 返回 -5 的符号:-1 表示负数
SELECT SIGN(-5); -- 输出: -1

-- 返回一个范围在 0 到 1 之间的随机浮点数
SELECT RAND(); -- 输出: 0.xxxx (实际结果会变化)

3.字符串函数

  1. concat(str1, str2, …):连接字符串。
    -- 连接 'hello' 和 'world'
    SELECT concat('hello', ' ', 'world'); -- 输出: 'hello world'
    
  • 语法:concat(string A, string B, string C, ……)

  • 返回:string

  • 说明:将A,B,C……等字符拼接为一个字符串

    hive> select concat('beijing','-','shanghai','-','shenzhen');
    输出:
    hive> beijing-shanghai-shenzhen
    
  1. upper(str):将字符串转换为大写。

    -- 将 'hello' 转换为大写
    SELECT upper('hello'); -- 输出: 'HELLO'
    
  2. lower(str):将字符串转换为小写。

    -- 将 'WORLD' 转换为小写
    SELECT lower('WORLD'); -- 输出: 'world'
    
  3. length(str):返回字符串的长度。

    -- 返回字符串 'hello world' 的长度
    SELECT length('hello world'); -- 输出: 11
    
  4. substr(str, start, length):提取子串。

    -- 提取字符串 'hello world' 的前 5 个字符
    SELECT substr('hello world', 1, 5); -- 输出: 'hello'
    

    获取倒数第三个字符以后的所有字符

    select substring("yushifu",-3); ifu
    
  5. replace(str, from_str, to_str):替换字符串中的子串。

    -- 将字符串 'hello world' 中的 'hello' 替换为 'hi'
    SELECT replace('hello world', 'hello', 'hi'); -- 输出: 'hi world'
    
  6. trim([BOTH | LEADING | TRAILING] trim_str FROM str):去除字符串两侧或指定位置的空格或指定字符。

    -- 去除字符串 '   hello world   ' 两侧的空格
    SELECT trim('   hello world   '); -- 输出: 'hello world'
    
    -- 去除字符串 'xxxhello worldxxx' 两侧的 'x'
    SELECT trim('x' FROM 'xxxhello worldxxx'); -- 输出: 'hello world'
    
  7. ltrim(str):去除字符串左侧的空格。

    -- 去除字符串 '   hello' 左侧的空格
    SELECT ltrim('   hello'); -- 输出: 'hello'
    
  8. rtrim(str):去除字符串右侧的空格。

    -- 去除字符串 'world   ' 右侧的空格
    SELECT rtrim('world   '); -- 输出: 'world'
    
  9. regexp_replace 函数用于使用正则表达式替换字符串中的匹配项。

    -- 使用正则表达式替换字符串中的数字为 'X'
    SELECT regexp_replace('Hello 123 World 456', '\\d+', 'X');
    -- 输出: 'Hello X World X'
    

    '\\d+' 是一个正则表达式,用于匹配一个或多个数字。'X' 是替换字符串。所以,regexp_replace 函数将字符串中的所有数字替换为 'X'

11.repeat:重复字符串

  • 语法:repeat(string A, int n)
  • 返回值:string
  • 说明:将字符串A重复n遍
hive> select repeat('123', 3);
输出:
hive> 123123123

12.split :字符串切割

  • 语法:split(string str, string pat)
  • 返回值:array
  • 说明:按照正则表达式pat匹配到的内容分割str,分割后的字符串,以数组的形式返回。
hive> select split('a-b-c-d','-');
输出:
hive> ["a","b","c","d"]

13.nvl :替换null值
语法:nvl(A,B)
说明:若A的值不为null,则返回A,否则返回B。

hive> select nvl(null,1); 
输出:
hive> 1

14.concat_ws:以指定分隔符拼接字符串或者字符串数组

  • 语法:concat_ws(string A, string…| array(string))
  • 返回值:string
  • 说明:使用分隔符A拼接多个字符串,或者一个数组的所有元素。
hive>select concat_ws('-','beijing','shanghai','shenzhen');
输出:
hive> beijing-shanghai-shenzhen

hive> select concat_ws('-',array('beijing','shenzhen','shanghai'));
输出:
hive> beijing-shanghai-shenzhen

15.get_json_object:解析json字符串

  • 语法:get_json_object(string json_string, string path)
  • 返回值:string
  • 说明:解析json的字符串json_string,返回path指定的内容。如果输入的json字符串无效,那么返回NULL。
    在这里插入图片描述

(1)获取json数组里面的json具体数据

hive> select get_json_object('[{"name":"yushifu","sex":"男","age":"24"},{"name":"彭于晏","sex":"男","age":"47"}]','$.[0].name');
输出:
hive> yushifu

(2)获取json数组里面的数据

hive> select get_json_object('[{"name":"yushifu","sex":"男","age":"24"},{"name":"彭于晏","sex":"男","age":"47"}]','$.[0].name');
输出:
hive> {"name":"yushifu","sex":"男","age":"24"}

4.日期函数

1.unix_timestamp返回当前或指定时间的时间戳

  • 语法:unix_timestamp()
  • 返回值:bigint
hive> select unix_timestamp('2024/04/25 09-19-08','yyyy/MM/dd HH-mm-ss');  
输出:
1714036748

在这里插入图片描述

说明:前面是日期后面是指日期传进来的具体格式

2.from_unixtime转化UNIX时间戳(从 1970-01-01 00:00:00 UTC 到指定时间的秒数)到当前时区的时间格式

  • 语法:from_unixtime(bigint unixtime[, string format])
  • 返回值:string
hive> select from_unixtime(1714036748);   
输出:
2024-04-25 09:19:08

在这里插入图片描述

3.current_date当前日期

hive> select current_date;     
输出:
2024-04-25 

在这里插入图片描述

4.current_timestamp当前的日期加时间,并且精确的毫秒

hive> select current_timestamp;   
输出:
2024-04-25 09:22:22.726

在这里插入图片描述

5.month获取日期中的月

  • 语法:month (string date)
  • 返回值:int
hive> select month('2024-04-25 09:19:08');
输出:
4

在这里插入图片描述

6.day获取日期中的日

  • 语法:day (string date)
  • 返回值:int
hive> select day('2024-04-25 09:19:08');    
输出:
25

在这里插入图片描述

7.hour获取日期中的小时

  • 语法:hour (string date)
  • 返回值:int
hive> select hour('2024-04-25 09:19:08');   
输出:
9

在这里插入图片描述

8)datediff两个日期相差的天数(结束日期减去开始日期的天数)

  • 语法:datediff(string enddate, string startdate)
  • 返回值:int
hive> select datediff('2021-08-08','2022-10-09');     
输出:
-427

9.date_add:日期加天数

  • 语法:date_add(string startdate, int days)
  • 返回值:string
  • 说明:返回开始日期 startdate 增加 days 天后的日期
hive> select date_add('2022-08-08',2);   
输出:
2022-08-10

10.date_sub:日期减天数

  • 语法:date_sub (string startdate, int days)
  • 返回值:string
  • 说明:返回开始日期startdate减少days天后的日期。
hive> select date_sub('2022-08-08',2);    
输出:
2022-08-06

11.date_format:将标准日期解析成指定格式字符串

hive> select date_format('2022-08-08','yyyy年-MM月-dd日')   
输出:
2022-08-08

5.流程控制函数

1. case when:条件判断函数

  • 语法一:case when a then b [when c then d]* [else e] end
  • 返回值:T
  • 说明:如果a为true,则返回b;如果c为true,则返回d;否则返回 e
hive> select case when 1=2 then 'tom' when 2=2 then 'mary' else 'tim' end ; 
mary
  • 语法二: case a when b then c [when d then e]* [else f] end
  • 返回值: T
  • 说明:如果a等于b,那么返回c;如果a等于d,那么返回e;否则返回f
hive> select case 100 when 50 then 'tom' when 100 then 'mary' else 'tim' end; 
mary

求出不同部门男女各多少人
emp_sex 表:
在这里插入图片描述

hive (default)>
select 
    dept_id,
    sum(case sex when '男' then 1 else 0 end) male_count,
    sum(case sex when '女' then 1 else 0 end) female_count
from emp_sex
group by dept_id;

在这里插入图片描述
在这里插入图片描述

2. if: 条件判断,类似于Java中三元运算符

  • 语法:if(boolean testCondition, T valueTrue, T valueFalseOrNull)
  • 返回值:T
  • 说明:当条件testCondition为true时,返回valueTrue;否则返回valueFalseOrNull

(1)条件满足,输出正确

hive> select if(10 > 5,'正确','错误'); 
输出:正确

(2)条件满足,输出错误

hive> select if(10 < 5,'正确','错误');
输出:错误

6.集合函数

1.size:集合中元素的个数

hive> select size(friends) from test;  
--2/2  每一行数据中的friends集合里的个数

2.map:创建map集合

  • 语法:map (key1, value1, key2, value2, …)
  • 说明:根据输入的key和value对构建map类型
hive> select map('uzi',1,'xiaohu',2);  
输出:
hive> {"uzi":1,"xiaohu":2}

3.map_keys: 返回map中的key

hive> select map_keys(map('uzi',1,'xiaohu',2));
输出:
hive>["uzi","xiaohu"]

4.map_values: 返回map中的value

hive> select map_values(map('uzi',1,'xiaohu',2));
输出:
hive>[1,2]

5.array:声明array集合

  • 语法:array(val1, val2, …)
  • 说明:根据输入的参数构建数组array类
hive> select array('1','2','3','4');
输出:
hive>["1","2","3","4"]

6.array_contains: 判断array中是否包含某个元素

hive> select array_contains(array('a','b','c','d'),'a');
输出:
hive> true

7.sort_array:将array中的元素排序

hive> select sort_array(array('a','d','c'));
输出:
hive> ["a","c","d"]

8.struct:声明struct中的各属性
语法:struct(val1, val2, val3, …)
说明:根据输入的参数构建结构体struct类

hive> select struct('name','age','weight');
输出:
hive> {"col1":"name","col2":"age","col3":"weight"}

9.named_struct:声明struct的属性和值

hive> select named_struct('name','uzi','age',18,'weight',80);
输出:
hive> {"name":"uzi","age":18,"weight":80}

3. 高级聚合函数

多进一出 (多行传入,一个行输出)。

  1. count(distinct expr[, expr…])

    • 计算唯一值的数量。可以对一个或多个列应用,用逗号分隔。
    • 示例:select count(distinct user_id) from table;
  2. collect_set(expr)

    • 返回一个包含唯一值的集合,不保证顺序(去重,无序)。
    • 示例:select collect_set(city) from users group by country;
hive>
select 
  sex,
  collect_set(job)
from
  employee
group by 
  sex
  1. collect_list(expr)
    • 返回一个包含所有值的列表,可能包含重复值,保留输入顺序(不去重,有序)。
    • 示例:select collect_list(product_name) from sales group by order_id;
      在这里插入图片描述
每个月的入职人数以及姓名
hive> 
select
  month(replace(hiredate,'/','-')) as month,
  count(*) as cn,
  Collect_list(name) as name_list
from
  employee
group by
  month(replace(hiredate,'/','-'))

month  cn  name_list
4	    2	["宋青书","周芷若"]
6	    1	["黄蓉"]
7	    1	["郭靖"]
8	    2	["张无忌","杨过"]
9	    2	["赵敏","小龙女"]
  1. grouping sets

    • 允许按不同的维度对数据进行聚合,生成多个分组的聚合结果。
    • 示例:select dept_id, gender, count(*) from employees group by grouping sets (dept_id, gender, ());
  2. rollup

    • 在group by子句中使用rollup,可以生成层次化的聚合结果,从整体到部分的逐层汇总。
    • 示例:select dept_id, gender, count(*) from employees group by rollup (dept_id, gender);
  3. cube

    • 类似于rollup,但是生成更多的组合,包括所有可能的组合。
    • 示例:select dept_id, gender, count(*) from employees group by cube (dept_id, gender);
  4. percentile(expr, p)

    • 计算表达式的百分位数,p是介于0和1之间的数字。
    • 示例:select percentile(salary, 0.75) from employee_salaries;
  5. ntile(n)

    • 排序后的数据集分成n个大致相等的部分,并为每个行分配一个标识符。
    • 示例:select name, salary, ntile(4) over (order by salary) as quartile from employees;

4.炸裂函数

在这里插入图片描述
Hive中的炸裂函数通常用于将包含多个元素的字符串或数组拆分成单独的元素,并生成新的行。

  1. explode()将数组拆分成单独的元素,并为每个元素生成新的行。

    • 示例:SELECT explode(array_column) AS single_element FROM table;
  2. posexplode():类似于explode(),但同时返回元素的位置索引。

    • 示例:SELECT posexplode(array_column) AS (pos, single_element) FROM table;

示例:

+-------------+-------------------+
| student_id  |   grades          |
+-------------+-------------------+
| 1           | ["Math: A", "Science: B", "History: A"] |
| 2           | ["Math: B", "Science: A", "History: C"] |
+-------------+-------------------+

使用explode()函数将grades数组拆分为单独的行

SELECT student_id, explode(grades) AS subject_grade
FROM student_grades;
+-------------+-------------------+
| student_id  |   subject_grade   |
+-------------+-------------------+
| 1           | "Math: A"         |
| 1           | "Science: B"      |
| 1           | "History: A"      |
| 2           | "Math: B"         |
| 2           | "Science: A"      |
| 2           | "History: C"      |
+-------------+-------------------+

每个学生的每个科目成绩都变成了一行。

如果还想保留每个成绩的位置索引,可以使用posexplode()函数:

SELECT student_id, posexplode(grades) AS (pos, subject_grade)
FROM student_grades;
+-------------+------+-------------------+
| student_id  | pos  |   subject_grade   |
+-------------+------+-------------------+
| 1           | 0    | "Math: A"         |
| 1           | 1    | "Science: B"      |
| 1           | 2    | "History: A"      |
| 2           | 0    | "Math: B"         |
| 2           | 1    | "Science: A"      |
| 2           | 2    | "History: C"      |
+-------------+------+-------------------+

5.窗口函数(开窗函数)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

按照功能,常用窗口可划分为如下几类:聚合函数、跨行取值函数、排名函数。

1. 聚合函数

  • 这些函数在窗口内执行聚合操作,例如计算平均值、总和、最大值、最小值等。
  • 示例:SUM(), AVG(), COUNT(), MAX(), MIN()

2. 跨行取值函数

  • 这些函数用于获取当前行与其前后行的值,通常用于计算变化值、差值等。
  • 示例:LEAD(), LAG(), FIRST_VALUE(), LAST_VALUE()
  1. lead():该函数用于获取当前行之后偏移量为offset的行的值。

    • 示例:lead(salary, 1, 0) over (order by date) as next_salary
      返回按日期排序的薪水数据集中每个员工的下一个日期的薪水,如果没有下一个日期的薪水,则返回0。
  2. lag():该函数用于获取当前行之前偏移量为offset的行的值。

    • 示例:lag(salary, 1, 0) over (order by date) as prev_salary
      返回按日期排序的薪水数据集中每个员工的前一个日期的薪水,如果没有前一个日期的薪水,则返回0。
      在这里插入图片描述
  3. first_value():该函数用于获取窗口内第一行的值。

    • 示例:first_value(salary) over (partition by department order by hire_date) as first_salary
      返回每个部门的第一个雇员的薪水,按入职日期排序。
  4. last_value():该函数用于获取窗口内最后一行的值。

    • 示例:last_value(salary) over (partition by department order by hire_date rows between unbounded preceding and unbounded following) as last_salary
      返回每个部门的最后一个雇员的薪水,按入职日期排序,并考虑窗口内所有行。
      在这里插入图片描述

这些函数可以根据具体需求结合使用,对数据进行各种类型的分析和比较,例如计算变化率、检测趋势、识别异常值等。在处理时间序列数据或需要考虑数据历史变化的情况下,这些函数尤其有用。


3. 排名函数

  • 这些函数用于为结果集中的每一行分配排名,可以根据需求处理并列排名。
  • 示例:ROW_NUMBER(), RANK(), DENSE_RANK(), NTILE()

这些函数通常用于在 hive 中对查询结果进行排序和分组,并为每行分配一个序号或者分组号。让我详细解释一下它们的用法:

  1. row_number()

    • 作用:为查询结果集中的每一行分配一个唯一的连续序号,按照指定的排序顺序进行分配。
    • 语法:
      row_number() over (order by column1 [, column2, ...])
      
    • 示例:
      select column1, column2, row_number() over (order by column1) as row_num
      from table_name;
      
    • 说明:row_number() 函数按照 order by 子句中指定的列进行排序,然后为每一行分配一个连续的唯一序号。
  2. rank()

    • 作用:为查询结果集中的每一行分配一个排名,相同的值将会得到相同的排名,但是可能会跳过排名。
    • 语法:
      rank() over (order by column1 [, column2, ...])
      
    • 示例:
      select column1, column2, rank() over (order by column1) as rank
      from table_name;
      
    • 说明:rank() 函数按照 order by 子句中指定的列进行排序,并为相同值的行分配相同的排名,但是可能会跳过排名(比如有两行值相同,排名为 1 和 2,下一行排名可能是 4)。
  3. dense_rank()

    • 作用:为查询结果集中的每一行分配一个排名,相同的值将会得到相同的排名,但不会跳过排名,排名是连续的。
    • 语法:
      dense_rank() over (order by column1 [, column2, ...])
      
    • 示例:
      select column1, column2, dense_rank() over (order by column1) as dense_rank
      from table_name;
      
    • 说明:dense_rank() 函数按照 order by 子句中指定的列进行排序,并为相同值的行分配相同的排名,但是不会跳过排名(比如有两行值相同,排名为 1 和 2,下一行排名仍然是 3)。
      在这里插入图片描述
  4. ntile()

    • 作用:将查询结果集分割成指定数量的桶(bucket),并为每一行分配一个桶号。
    • 语法:
      ntile(n) over (order by column1 [, column2, ...])
      
    • 示例:
      select column1, column2, ntile(4) over (order by column1) as quartile
      from table_name;
      
    • 说明:ntile(n) 函数将查询结果集分成 n 个桶,并为每个桶中的行分配一个桶号(从 1 到 n)。如果行数不能被 n 整除,最后一个桶中的行数可能会少于其他桶。

6.自定义函数

标准函数无法满足需求时,就可以考虑编写自定义函数。这些函数可以用Java编写,并通过Hive的UDF、UDAF、UDTF接口来实现。

  1. 标量函数(UDF - User-Defined Function):

    • 标量函数是处理一行输入并返回单个值的函数。例如,你可以编写一个函数来计算字符串长度、执行日期转换等操作。
    • 实现:编写一个Java类,继承自Hive的org.apache.hadoop.hive.ql.udf.generic.GenericUDF类,并实现evaluate()方法来定义函数的逻辑。然后编译成JAR文件,并在Hive中注册该函数。
  2. 聚合函数(UDAF - User-Defined Aggregate Function):

    • 聚合函数用于对一组值进行聚合操作(如求和、平均值等),并返回单个结果。例如,你可以编写一个函数来计算某列的中位数或者分位数。
    • 实现:编写一个Java类,实现Hive的org.apache.hadoop.hive.ql.exec.UDAFEvaluator接口,并实现一系列方法来定义聚合函数的行为,包括init(), iterate(), terminatePartial(), merge(), terminate()等。然后编译成JAR文件,并在Hive中注册该函数。
  3. 表生成函数(UDTF - User-Defined Table-Generating Function):

    • 表生成函数将输入的一行数据转换成多行数据。例如,你可以编写一个函数来将一列字符串拆分成多行。
    • 实现:编写一个Java类,继承自Hive的org.apache.hadoop.hive.ql.udf.generic.GenericUDTF类,并实现process()方法来定义函数的逻辑。然后编译成JAR文件,并在Hive中注册该函数。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1629738.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

vim的IDE进阶之路

一 ctags 1 安装 安装ctags比较简单&#xff0c;我用的是vim-plug&#xff0c;网络上随便一搜应该就有很多教程&#xff0c;而且没有什么坑 2 使用 vim之函数跳转功能_nvim函数跳转-CSDN博客https://blog.csdn.net/ballack_linux/article/details/71036072不过针对cuda程序…

ZooKeeper 搭建详细步骤之一(单机模式)

ZooKeeper 搭建详细步骤之三&#xff08;真集群&#xff09; ZooKeeper 搭建详细步骤之二&#xff08;伪集群模式&#xff09; ZooKeeper 搭建详细步骤之一&#xff08;单机模式&#xff09; ZooKeeper 及相关概念简介 搭建模式简述 ZooKeeper 的搭建模式包括单机模式、集群模…

Blender笔记之基本操作

code review! —— 2024-04-27 杭州 Blender笔记…

yolov8旋转目标检测输出的角度转化为适合机械爪抓取的角度

1. 机械爪抓取时旋转的角度定义 以X轴正方向&#xff08;右&#xff09;为零度方向&#xff0c;角度取值范围[-90&#xff0c;90)。 确认角度的方法&#xff1a; 逆时针旋转X轴&#xff0c;X轴碰到矩形框长边时旋转过的角度记为angleX&#xff1a; 1.如果angleX小于90&#xf…

BootStrap详解

Bootstrap简介 什么是BootStrap&#xff1f; BootStrap来自Twitter&#xff0c;是目前最受欢迎的响应式前端框Bootstrap是基于HTML、CSS、JavaScript的&#xff0c;它简洁灵活&#xff0c;使得Web开发更加快捷 为什么使用Bootstrap&#xff1f; 移动设备优先&#xff1a;自…

在MySQL中isnull()函数不能作为替代null值!

在MySQL中isnull()函数不能作为替代null值&#xff01; 如下&#xff1a; 首先有个名字为business的表&#xff1a; SELECT ISNULL(business_name,no business_name) AS bus_isnull FROM business WHERE id2 直接运行就会报错&#xff1a; 错误代码&#xff1a; 1582 Incor…

ZISUOJ 高级语言程序设计实训-基础C(部分题)

说明&#xff1a; 有几个题是不会讲的&#xff0c;我只能保证大家拿保底分。 题目列表&#xff1a; 问题 A: 求平均数1 思路&#xff1a; 送分题…… 参考题解&#xff1a; #include <iostream> #include <iomanip> using std::cin; using std::cout;int main(…

Linux系统安全与应用【二】

目录 1.开关机安全控制 1.2 实例&#xff1a;GRUB 菜单设置密码 2.终端登录安全控制 2.1 限制root只在安全终端登录 ​3.弱口令检测 3.1 Joth the Ripper,JR​编辑 4.网络端口扫描 4.1 nmap命令 1.开关机安全控制 1.1 GRUB限制 限制更改GRUB引导参数 通常情况下在系统…

用fgets()替换fscanf()解决文件读取在小熊猫C++失败问题

fscanf&#xff08;&#xff09;遇到空格就结束读取&#xff0c;导致文件读取数据没完就退出读取以至于不能导入游戏地图工程。 看看到右侧小方块轨迹知晓采样区移动情况 也已经实现摄像机追随玩家效果 // 程序&#xff1a;2D RPG 地图编辑器与摄像机追随 // 作者&#xff1…

本地认证的密码去哪了?怎么保证安全的?

1. windows登录的明文密码&#xff0c;存储过程是怎么样的&#xff1f;密文存在哪个文件下?该文件是否可以打开&#xff0c;并且查看到密文&#xff1f; 系统将输入的明文密码通过hash算法转为哈希值&#xff0c;且输入的值会在内存中立即删除无法查看。 然后将密文存放在C:…

PotatoPie 4.0 实验教程(26) —— FPGA实现摄像头图像拉普拉斯锐化

为什么要对图像进行拉普拉斯锐化 对图像进行拉普拉斯锐化的目的是增强图像的边缘和细节&#xff0c;使图像看起来更加清晰和锐利。这种技术常用于图像处理中&#xff0c;具体原因如下&#xff1a; 增强图像的边缘信息&#xff1a;拉普拉斯锐化可以突出图像中的边缘特征&#x…

【go零基础】go-zero从零基础学习到实战教程 - 0环境配置

是个前端&#xff0c;最近开始学习go&#xff0c;后端除node外基本0基础&#xff0c;所以学习曲线有点绕&#xff0c;目标是个基础的服务端demo&#xff0c;搞个api服务后台&#xff0c;包含基础的用户登录、文章发布和写文章、权限控制&#xff0c;差不多就是个完整博客系统。…

2024年更新迭代最快的宿主软件FL Studio 24.0.99.4094中文激活版

FL Studio 24.0.99.4094中文激活版是我见过更新迭代最快的宿主软件&#xff0c;没有之一。FL Studio12、FL Studio20、FL Studio21、FL Studio24等等。 编辑有时甚至我刚刚下载好了最新版本&#xff0c;熟悉了新版本一些好用的操作&#xff0c;Fl Studio就又推出了更新的版本&a…

视频通话实时换脸:支持训练面部模型 | 开源日报 No.235

iperov/DeepFaceLive Stars: 19.7k License: GPL-3.0 DeepFaceLive 是一个用于 PC 实时流媒体或视频通话的人脸换装工具。 可以使用训练好的人脸模型从网络摄像头或视频中交换面部。提供多个公共面部模型&#xff0c;包括 Keanu Reeves、Mr. Bean 等。支持自己训练面部模型以…

Linux--进程控制(2)--进程的程序替换(夺舍)

目录 进程的程序替换 0.相关函数 1.先看现象 2.解释原理 3.将代码改成多进程版 4.使用其它的替换函数&#xff0c;并且认识函数参数的含义 5.其它 进程的程序替换 0.相关函数 关于进程替换我们需要了解的6个函数&#xff1a; 函数解释&#xff1a; 这些函数如果调用成功则…

Datart 扩装下载功能之PDF和图片下载

Datart 扩装下载功能之PDF和图片下载 首先下载依赖 yum install mesa-libOSMesa-devel gnu-free-sans-fonts wqy-zenhei-fonts -y 然后下载安装chrome yum install https://dl.google.com/linux/direct/google-chrome-stable_current_x86_64.rpm 查看chrome版本号 google…

CSS之显示覆盖内容(z-index)

前言&#xff1a; 我们有的时候&#xff0c;希望下方的内容能够显示到上方&#xff0c;达到类似于多个图层的效果&#xff0c;此时我们可以利用z-index这个属性。 介绍&#xff1b; z-index属性值是用来设置元素的堆叠顺序(元素层级)。 覆盖原则&#xff1a; <1>特殊…

Java反序列化-CC3链

前言 前面的CC1与CC6链都是通过 Runtime.exec() 进行命令执行的。当服务器的代码将 Runtime放入黑名单的时候就不能使用了。 CC3链的好处是通过动态加载类的机制实现恶意类代码执行。 版本限制 jdk8u65Commons-Collections 3.2.1 动态类加载 loadClass -> 负责加载load…

船舶空调的特殊性和标准

船用空调的特殊性 船用空调和陆用空调的区别有&#xff1a; ①海洋环境具有高盐度、高湿度的特性&#xff0c;船用空调系统应特别注意防腐和防霉&#xff1b; ②船用空调需要适应船舶在海面航行时的倾斜或摇摆&#xff1b; ③船用空调需要长期在海上运行&#xff0c;维修不易&…

unity 录制360全景渲染图

1.打开pakcageManager &#xff0c;选择packages为 unityRegisty&#xff0c;找到unityRecorder插件下载&#xff0c;点击右下角instant安装&#xff0c;如果插件列表为空&#xff0c;检查是否连接网络&#xff0c;重启Unity 2.打开录制面板 3.add recorder 选择ImageSequence …