代码随想录算法训练营DAY38|C++动态规划Part.1|动态规划理论基础、509.斐波那契数、70.爬楼梯、746.使用最小花费爬楼梯

news2024/12/25 4:57:31

文章目录

  • 动态规划理论基础
    • 什么是动态规划
    • 动态规划的解题步骤
      • DP数组以及下标的含义
      • 递推公式
      • DP数组初始化
      • DP数组遍历顺序
      • 打印DP数组
      • 动态规划五部曲
    • 动态规划应该如何debug
  • 509.斐波那契数
    • 什么是斐波那契数列
    • 动态规划五部曲
      • 确定dp数组下标以及含义
      • 确定递推公式
      • dp数组如何初始化
      • 确定遍历顺序
      • 打印DP数组
    • 代码实现
    • CPP代码
  • 70.爬楼梯
    • 题意分析
    • 动规五部曲
      • 确定dp数组下标以及含义
      • 确定递推公式
      • dp数组如何初始化
      • 确定遍历顺序
      • 打印DP数组
    • 扩展题
    • CPP代码
  • 746.使用最小花费爬楼梯

在这里插入图片描述

动态规划理论基础

什么是动态规划

动态规划(Dynamic Programming, DP),如果某一个问题有很多重叠子问题,这样往往是用动态规划是最有效的。

所以动态规划中每一个状态一定是由上一个状态推导出来的这一点就区分于贪心,贪心没有状态推导,而是从局部直接选最优的。

对于刷题来说就抓住一句话:

动规是由前一个状态推导出来的,而贪心是从局部直接选出最优的

动态规划的解题步骤

在全面总结动态规划解题步骤前,同时也是做动态规划类题目之前,我们要先搞明白以下几个问题:

DP数组以及下标的含义

有很多类问题有一个二维dp数组,其中的行、列的含义一定要搞清楚;同理一维dp数组中的值又是什么呢?在写代码前,一定要搞明白这是什么意思。

递推公式

动态规划递推公式仅仅是一部分,而不是只要掌握了递推公式,动规就变得简单了。

DP数组初始化

dp数组如何初始化其实紧贴着dp数组以及下标含义,如果dp数组里是什么,各个维度含义是什么,那dp数组的初始化更加无从谈起了。

DP数组遍历顺序

对于背包类问题,遍历顺序是非常有讲究的,所以每道题一定要弄清他们的遍历顺序。

打印DP数组

如果题目通过不了,首先应该考虑是不是dp数组出了问题,我们应该吧dp数组打印出来看是否符合预期

动态规划五部曲

一定要仔细分析上述的五大问题

  1. 确定dp数组(dp table)以及下标的含义
  2. 确定递推公式
  3. dp数组如何初始化
  4. 确定遍历顺序
  5. 举例推导dp数组

动态规划应该如何debug

做动规的题目,写代码之前一定要把状态转移在dp数组的上具体情况模拟一遍,心中有数,确定最后推出的是想要的结果

然后再写代码,如果代码没通过就打印dp数组,看看是不是和自己预先推导的哪里不一样。

这样才是一个完整的思考过程,而不是一旦代码出问题,就毫无头绪的东改改西改改,最后过不了,或者说是稀里糊涂的过了

这里给出卡哥写的自我debug的灵魂三问:

  • 这道题目我举例推导状态转移公式了么?
  • 我打印dp数组的日志了么?
  • 打印出来了dp数组和我想的一样么?

509.斐波那契数

力扣题目链

文章链接:509.斐波那契数列

视频链接:手把手带你入门动态规划 | leetcode:509.斐波那契数

状态:迭代法还是会写一写

什么是斐波那契数列

动态规划五部曲

确定dp数组下标以及含义

dp[i]表示第i个斐波那契数值为dp[i]

确定递推公式

斐波那契数的递推公式很明显: d p [ i ] = d p [ i − 1 ] + d p [ i − 2 ] dp[i] = dp[i - 1] + dp[i - 2] dp[i]=dp[i1]+dp[i2]

dp数组如何初始化

斐波那契的初始化也很简单 [ 0 , 1 , 1 , 2 , 3 , 5 , 8 ] [0, 1, 1, 2, 3, 5, 8] [0,1,1,2,3,5,8]

由数学归纳可知: d p [ 0 ] = 0 ; d p [ 1 ] = 1 ; dp[0] = 0; dp[1] = 1; dp[0]=0;dp[1]=1;

在很多题目中,dp数组的初始化往往也依赖于递推公式

确定遍历顺序

本题中,遍历顺序从前向后即可。(有一些题目从后向前遍历;有一些题目两层for循环,其先先后顺序也有说法)

打印DP数组

这个主要是用来debug的

代码实现

vector<int> dp(n+1);
//初始化
dp[0] = 0; dp[1] = 1;
for (i = 2; i <= n; i++)
  dp[i] = dp[i-1] + dp[i-2];
return dp[n];

对状态进行压缩,只需要维护两个数值就可以了,不需要记录整个序列.代码可以缩减为

int fib(int N){
  	if (N <= 1) return N;
  	int dp[2];
  	dp[0] = 0;
  	dp[1] = 1;
  	for (int i = 2; i <= N; i++){
    	int sum = dp[0] + dp[1];
    	dp[0] = dp[1];
    	dp[1] = sum;
  	}
  	return dp[1];
}

时间复杂度为O(2^n)的递归解法:

int fib(int N){
  if (N < 2) return N;
  return fib(N - 1) + fib(N - 2);
}

CPP代码

class Solution {
public:
    int fib(int N) {
        if (N <= 1) return N;
        vector<int> dp(N + 1);
        dp[0] = 0;
        dp[1] = 1;
        for (int i = 2; i <= N; i++) {
            dp[i] = dp[i - 1] + dp[i - 2];
        }
        return dp[N];
    }
};
//只维护两个数值
class Solution {
public:
    int fib(int N) {
        if (N <= 1) return N;
        int dp[2];
        dp[0] = 0;
        dp[1] = 1;
        for (int i = 2; i <= N; i++) {
            int sum = dp[0] + dp[1];
            dp[0] = dp[1];
            dp[1] = sum;
        }
        return dp[1];
    }
};
//递归
class Solution {
public:
    int fib(int N) {
        if (N < 2) return N;
        return fib(N - 1) + fib(N - 2);
    }
};

70.爬楼梯

力扣题目链接

文章讲解:70.爬楼梯

视频讲解:带你学透动态规划-爬楼梯|LeetCode:70.爬楼梯)

状态:

题意分析

如果对于一个n阶台阶,每次你可以爬 12 个台阶。有多少种不同的方法可以爬到楼顶。

如果台阶一共只有1阶,一共只有1

如果台阶有2阶,一共有2

如果台阶有3阶,一共有3

如果台阶有4阶,一共有5

本质上,当前台阶有几种方法,主要依赖于前两个状态

其实这就是递推关系。这种递推关系可以用动态规划来解决。

动规五部曲

确定dp数组下标以及含义

dp[i],达到i阶有dp[i]种方法。

确定递推公式

dp[i - 2]表示达到i-2阶有dp[i - 2]种方法

dp[i - 1]表示达到i-1阶有dp[i - 1]种方法

dp[i]表示达到i阶有dp[i]种方法

d p [ i ] = d p [ i − 2 ] + d p [ i − 1 ] dp[i] = dp[i-2]+dp[i-1] dp[i]=dp[i2]+dp[i1]

dp数组如何初始化

从递推公式可以看出,最重要的就是初始化数组的前几位

dp[0] = 1还是dp[0] = 0

因为我们dp[2] = 2,从递推公式出发,dp[0]应该初始化成1。同时题目中也说过,n为正整数

在代码随想录的代码中,是不初始化0的,而是直接初始化dp[2]dp[1]

确定遍历顺序

从前向后遍历即可

打印DP数组

用于debug

其实本质上,从上文论述的规律可以看出,其实本题就是一个斐波那契数列

扩展题

一步可以走m个台阶,爬n阶的楼梯有多少种方法。

词题可以用完全背包的思路来解决。

CPP代码

//还是只维护两个数组
class Solution {
public:
    int climbStairs(int n) {
        if (n <= 3) return n;
        int dp[2];
        dp[0] = 1; dp[1] = 2;
        for (int i = 3; i <= n; ++i) {
            int cur = dp[0] + dp[1];
            dp[0] = dp[1];
            dp[1] = cur;
        }
        return dp[1];

    }
};

746.使用最小花费爬楼梯

力扣题目链接

文章讲解:746.使用最小花费爬楼梯

视频讲解:动态规划开更了!| LeetCode:746. 使用最小花费爬楼梯

状态:相较于前两个题目,难度一下就上来了,我个人感觉是贪心和动态规划的结合。

在题目描述中,我们可以选择从下标为0或下标为1的台阶开始爬楼梯。

思路

dp数组含义

想给出结论,本题仍然只需要一个一维的dp数组,其下标记录我们到达了哪个台阶,其中的值就是体力的最小消耗。

以上的推导都是怎么来的呢?

要求的是爬到楼顶,那么我们dp数组应该得用下标来表示我们爬的位置,看是不是到楼顶了;

然后我们要求一个最小消耗,那么我们的dp数组刚好可以存到达该层的一个消耗,刚好逻辑就闭环。

综上:

dp[i]表示到达i位置所需要的花费为dp[i]

递推公式

本题中我们要求的就是dp[i],那么如何跳到dp[i]呢?我们可以从dp[i-1]跳一步到dp[i],也可以从dp[i-2]跳两步到dp[i]

如果从dp[i-1]跳到dp[i]的话,所需要的花费是dp[i-1] + cost[i-1]

如果从dp[i-2]跳到dp[i]的话,所需要的花费是dp[i-2] + cost[i-2]

dp[i]表示到达i位置所需要的花费为dp[i]

显然递推公式为: d p [ i ] = m i n ( d p [ i − 1 ] + c o n s t [ i − 1 ] , d p [ i − 2 ] + c o n s t [ i − 2 ] ) dp[i] = min(dp[i-1] + const[i-1], dp[i-2] + const[i-2]) dp[i]=min(dp[i1]+const[i1],dp[i2]+const[i2])

初始化

很明显,本题只要初始化了dp[1]dp[0]就可以把递推公式打通了。

//题意表明了,可以选择从0层或者从第1层开始跳
dp[0] = 0;	//到达0位置最小花费为0
dp[1] = 0;	//到底1位置最小花费也是0. 因为我们可以选择嘛

遍历顺序

从零往后去遍历

因为是模拟台阶,而且dp[i]由dp[i-1]dp[i-2]推出,所以是从前到后遍历cost数组就可以了。

打印dp数组

打印出来看是不是和我们预想的一样

CPP代码

class Solution {
public:
    int minCostClimbingStairs(vector<int>& cost) {
        vector<int> dp(cost.size() + 1);
        dp[0] = 0; // 默认第一步都是不花费体力的
        dp[1] = 0;
        for (int i = 2; i <= cost.size(); i++) {
            dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);
        }
        return dp[cost.size()];
    }
};

//只维护两个数字
class Solution {
public:
    int minCostClimbingStairs(vector<int>& cost) {
        int dp0 = 0;
        int dp1 = 0;
        for (int i = 2; i <= cost.size(); i++) {
            int dpi = min(dp1 + cost[i - 1], dp0 + cost[i - 2]);
            dp0 = dp1; // 记录一下前两位
            dp1 = dpi;
        }
        return dp1;
    }
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1627086.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

免费的单片机物联网MQTT平台选择

目的是多设备接入中控&#xff0c;平台只做转发。 选择巴法云&#xff1a;巴法科技&巴法云-巴法设备云-巴法物联网云平台 clientId是私钥uid&#xff1a; 多设备 clientId 填同一个 uid 都是可以的。平台应该是加了后缀区分。 支持自定义topic&#xff0c;操作简单&#x…

关于我在 uniapp 开发过程中遇到的问题(更新中...)

目录 uniapp 勾选自带的隐私政策 出现的问题 是否忽略版本兼容检查提示 勾选了uniapp的消息推送 打包后弹出 push module was not added when packaging, please refertohttps://ask.dcloud.net.cn /article/283 关于uniapp的真机调试 一直等待问题 或者 正在建立链接 在…

封装 H.264 视频为 FLV 格式然后推流

封装 H.264 视频为 FLV 格式并通过 RTMP 推流 flyfish 协议 RTMP (Real-Time Messaging Protocol) RTSP (Real Time Streaming Protocol) SRT (Secure Reliable Transport) WebRTC RTMP&#xff08;Real Time Messaging Protocol&#xff09;是一种用于实时音视频流传输的协…

以更多架构核心专利,推进 SDS 产业创新创造

今天是第 24 个世界知识产权日&#xff0c;今年世界知识产权日活动的主题是&#xff1a;“知识产权和可持续发展目标&#xff1a;立足创新创造&#xff0c;构建共同未来。” 这也正是 XSKY 在软件定义存储领域的目标之一。以“数据常青”为使命的 XSKY&#xff0c;始终立足于软…

Linux基础——Linux基本指令(下)

前言&#xff1a;Linux基本指令学到这里也快接近尾声了&#xff0c;如果对前面内容还有不清楚建议回顾这两篇文章 。 Linux基本指令(上) 和Linux基本指令(中) 接前两篇&#xff0c;接下来让我们再深入学习一下最后几个Linux指令,Linux基本指令将在本篇完结。 在此前&#xff…

将图片添加描述批量写入excel

原始图片 写入excel的效果 代码 # by zengxy chatgpt # from https://blog.csdn.net/imwatersimport os import xlsxwriter from PIL import Imageclass Image2Xlsx():def __init__(self,xls_path,head_list[编号, 图片, 名称, "描述",备注],set_default_y112,se…

StarRocks x Paimon 构建极速实时湖仓分析架构实践

Paimon 介绍 Apache Paimon 是新一代的湖格式&#xff0c;可以使用 Flink 和 Spark 构建实时 Lakehouse 架构&#xff0c;以进行流式处理和批处理操作。Paimon 创新性地使用 LSM&#xff08;日志结构合并树&#xff09;结构&#xff0c;将实时流式更新引入 Lakehouse 架构中。 …

Spark原理之Cache Table的工作原理及实现自动缓存重复表的思考

CACHE TABLE的能力 使用此语法&#xff0c;可以由用户自定义要缓存的结果集&#xff0c;实际上就是一个临时表&#xff0c;不过数据存储在Spark集群内部&#xff0c;由Application所分配的executors管理。 一旦定义了一个缓存表&#xff0c;就可以在SQL脚本中随处引用这个表名…

HTTP 网络协议的请求头信息,响应头信息,具体详解(2024-04-26)

1、通用头部 2、常见的 HTTP请求头信息 HTTP 响应头信息是服务器在响应客户端的HTTP请求时发送的一系列头字段&#xff0c;它们提供了关于响应的附加信息和服务器的指令。 3、常见的 HTTP 响应头信息 响应头向客户端提供一些额外信息&#xff0c;比如谁在发送响应、响应者的功…

数据分析:甲基化分析-从DNA methylation的IDAT文件到CpG site的Beta values

介绍 DNA Methylation和疾病的发生发展存在密切相关&#xff0c;它一般通过CH3替换碱基5‘碳的H原子&#xff0c;进而调控基因的转录。常用的DNA methylation是Illumina Infinium methylation arrays&#xff0c;该芯片有450K和850K&#xff08;也即是EPIC&#xff09;。 该脚…

深入解析YOLOv2

深入解析YOLOv2 引言 目标检测是计算机视觉中的一个核心问题&#xff0c;它旨在识别图像中所有感兴趣的目标&#xff0c;并给出它们的类别和位置。近年来&#xff0c;随着深度学习技术的发展&#xff0c;目标检测领域取得了巨大的进步。YOLO&#xff08;You Only Look Once&a…

STM32的Flash读写保护

参考链接 STM32的Flash读写保护&#xff0c;SWD引脚锁的各种解决办法汇总&#xff08;2020-03-10&#xff09;-腾讯云开发者社区-腾讯云 (tencent.com)https://cloud.tencent.com/developer/article/1597959 STM32系列芯片Flash解除写保护的办法 - 知乎 (zhihu.com)https://zh…

Xcode for Mac:强大易用的集成开发环境

Xcode for Mac是一款专为苹果开发者打造的集成开发环境&#xff08;IDE&#xff09;&#xff0c;它集成了代码编辑器、编译器、调试器等一系列开发工具&#xff0c;让开发者能够在同一界面内完成应用的开发、测试和调试工作。 Xcode for Mac v15.2正式版下载 Xcode支持多种编程…

采购数据分析驾驶舱分享,照着它抄作业

今天我们来看一张采购管理驾驶舱。这是一张充分运用了多种数据可视化图表、智能分析功能&#xff0c;从物料和供应商的角度全面分析采购情况的BI数据可视化报表&#xff0c;主要分为三个部分&#xff0c;接下来就分部分来了解一下。 第一部分&#xff1a;关键指标计算及颜色预…

基于Anaconda搭建Pytorch环境

准备虚拟环境 创建一个虚拟创建&#xff1a; conda create --name nlp python3.11.7激活虚拟环境&#xff1a; conda activate nlp安装pytorh 首先&#xff0c;可以通过任务管理器查看你的电脑是否支持GPU&#xff1a; 如果支持&#xff0c;到网址&#xff1a;https://py…

了解HTTP代理服务器:优势、分类及应用实践

在我们日常的网络使用中&#xff0c;我们经常听到HTTP代理服务器这个术语。那么&#xff0c;HTTP代理服务器到底是什么&#xff1f;它有什么优势和分类&#xff1f;又如何应用于实践中呢&#xff1f;让我们一起来了解一下。 HTTP代理服务器是一种位于客户端和服务器之间的中间…

鸿蒙南向开发环境的搭建(OpenHarmony)

在嵌入式开发中&#xff0c;很多开发者习惯于使用Windows进行代码的编辑&#xff0c;比如使用Windows的Visual StudioCode进行OpenHarmony代码的开发。但当前阶段&#xff0c;大部分的开发板源码还不支持在Windows环境下进行编译&#xff0c;如Hi3861、Hi3516系列开发板。因此&…

2024年智能手表行业线上市场销售数据分析

智能手表市场近几年随着各大厂商的加入&#xff0c;逐渐朝着专业化、智能化发展。从一开始被认为是“智商税”、“鸡肋产品”到如今可以成为人体心脑血管健康监测、专业运动测速、移动定位的“多功能电子管家”&#xff0c;智能手表市场仍在不断发展中。 根据鲸参谋数据显示&a…

CSS中设置透明度的2个属性:opacity,RGBA以及它们的区别

你好&#xff0c;我是云桃桃。 一个希望帮助更多朋友快速入门 WEB 前端的程序媛。 云桃桃-大专生&#xff0c;一枚程序媛&#xff0c;感谢关注。回复 “前端基础题”&#xff0c;可免费获得前端基础 100 题汇总&#xff0c;回复 “前端工具”&#xff0c;可获取 Web 开发工具合…

关于SSL加密,您应该知道什么?

SSL加密&#xff0c;全称为安全套接字层加密&#xff0c;是一种网络安全协议&#xff0c;主要用于在网络通信中提供隐私和数据完整性。它通过在客户端和服务器之间建立一个加密的通道&#xff0c;确保数据在传输过程中不被窃取或篡改。随着互联网的普及和电子商务的快速发展&am…