STM32 HAL库F103系列之DAC实验(二)

news2024/12/23 23:47:52

DAC输出正弦波实验

实验简要

1,功能描述

        通过DAC1通道1(PA4)输出正弦波,然后通过DS100示波器查看波形

2,使用定时器7 TRGO事件触发转换

        TEN1位置1TSEL1[2:0]=010 

3,关闭输出缓冲

        BOFF1位置1

4,使用DMA模式

        DMAEN1位置1

5,使用12位右对齐模式

        将数字量写入DAC_DHR12R1寄存器

配置步骤

1,初始化DMA 

        HAL_DMA_Init()

2,将DMAADC句柄联系起来

        __HAL_LINKDMA()

3,初始化DAC

        HAL_DAC_Init()

4DAC MSP初始化

        HAL_DAC_MspInit()     配置NVICCLOCKGPIO

5,配置DAC相应通道相关参数

      HAL_DAC_ConfigChannel()  

6,启动DAM传输

        HAL_DMA_Start()

7,配置定时器溢出频率并启动

        HAL_TIM_Base_Init() HAL_TIM_Base_Start()

8,配置定时器触发DAC转换

        HAL_TIMEx_MasterConfigSynchronization()

9,停止/启动DAC转换、DMA传输

        HAL_DAC_Stop_DMA() HAL_DAC_Start_DMA()

正弦波序列

源码

dac.c

#include "./BSP/DAC/dac.h"


DMA_HandleTypeDef g_dma_dac_handle;
DAC_HandleTypeDef g_dac_dma_handle;

extern uint16_t g_dac_sin_buf[4096];            /* 发送数据缓冲区 */

/* DAC DMA输出波形初始化函数 */
void dac_dma_wave_init(void)
{
    DAC_ChannelConfTypeDef dac_ch_conf;
    
   __HAL_RCC_DMA2_CLK_ENABLE();
    
    g_dma_dac_handle.Instance = DMA2_Channel3;
    g_dma_dac_handle.Init.Direction = DMA_MEMORY_TO_PERIPH;
    g_dma_dac_handle.Init.PeriphInc = DMA_PINC_DISABLE;
    g_dma_dac_handle.Init.MemInc = DMA_MINC_ENABLE;
    g_dma_dac_handle.Init.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD;
    g_dma_dac_handle.Init.MemDataAlignment = DMA_MDATAALIGN_HALFWORD;
    g_dma_dac_handle.Init.Mode = DMA_CIRCULAR;
    g_dma_dac_handle.Init.Priority = DMA_PRIORITY_MEDIUM;
    HAL_DMA_Init(&g_dma_dac_handle);
    
    __HAL_LINKDMA(&g_dac_dma_handle, DMA_Handle1, g_dma_dac_handle);
    
    g_dac_dma_handle.Instance = DAC;
    HAL_DAC_Init(&g_dac_dma_handle);
    
    dac_ch_conf.DAC_Trigger = DAC_TRIGGER_T7_TRGO;
    dac_ch_conf.DAC_OutputBuffer = DAC_OUTPUTBUFFER_DISABLE;
    HAL_DAC_ConfigChannel(&g_dac_dma_handle, &dac_ch_conf, DAC_CHANNEL_1);
    
    HAL_DMA_Start(&g_dma_dac_handle, (uint32_t)g_dac_sin_buf, (uint32_t)&DAC1->DHR12R1, 0);
}

/* DAC MSP初始化函数 */
void HAL_DAC_MspInit(DAC_HandleTypeDef *hdac)
{
    if (hdac->Instance == DAC)
    {
        GPIO_InitTypeDef gpio_init_struct;
        
        __HAL_RCC_GPIOA_CLK_ENABLE();
        __HAL_RCC_DAC_CLK_ENABLE();

        gpio_init_struct.Pin = GPIO_PIN_4;
        gpio_init_struct.Mode = GPIO_MODE_ANALOG;
        HAL_GPIO_Init(GPIOA, &gpio_init_struct);
    }
}

/**
 * @brief       DAC DMA使能波形输出
 *   @note      TIM7的输入时钟频率(f)来自APB1, f = 36M * 2 = 72Mhz.
 *              DAC触发频率 ftrgo = f / ((psc + 1) * (arr + 1))
 *              波形频率 = ftrgo / ndtr; 
 *
 * @param       ndtr        : DMA通道单次传输数据量
 * @param       arr         : TIM7的自动重装载值
 * @param       psc         : TIM7的分频系数
 * @retval      无
 */
void dac_dma_wave_enable(uint16_t cndtr, uint16_t arr, uint16_t psc)
{
    TIM_HandleTypeDef tim7_handle = {0};
    TIM_MasterConfigTypeDef tim_mater_config = {0};
    
    __HAL_RCC_TIM7_CLK_ENABLE();
    
    tim7_handle.Instance = TIM7;
    tim7_handle.Init.Prescaler = psc;
    tim7_handle.Init.Period = arr;
    HAL_TIM_Base_Init(&tim7_handle);

    tim_mater_config.MasterOutputTrigger = TIM_TRGO_UPDATE;
    tim_mater_config.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
    HAL_TIMEx_MasterConfigSynchronization(&tim7_handle, &tim_mater_config);

    HAL_TIM_Base_Start(&tim7_handle);

    HAL_DAC_Stop_DMA(&g_dac_dma_handle, DAC_CHANNEL_1);
    HAL_DAC_Start_DMA(&g_dac_dma_handle, DAC_CHANNEL_1, (uint32_t *)g_dac_sin_buf, cndtr, DAC_ALIGN_12B_R);
}

dac.h

#ifndef __DAC_H
#define __DAC_H

#include "./SYSTEM/sys/sys.h"


void dac_dma_wave_init(void);
void dac_dma_wave_enable(uint16_t cndtr, uint16_t arr, uint16_t psc);

#endif



main.c

#include "./SYSTEM/sys/sys.h"
#include "./SYSTEM/usart/usart.h"
#include "./SYSTEM/delay/delay.h"
#include "./BSP/LED/led.h"
#include "./BSP/LCD/lcd.h"
#include "./BSP/ADC/adc.h"
#include "./BSP/DAC/dac.h"
#include "./BSP/KEY/key.h"
#include "math.h"


uint16_t g_dac_sin_buf[4096];            /* 发送数据缓冲区 */

/**
 * @brief       产生正弦波序列函数
 *   @note      需保证: maxval > samples/2
 * @param       maxval : 最大值(0 < maxval < 2048)
 * @param       samples: 采样点的个数
 * @retval      无
 */
void dac_creat_sin_buf(uint16_t maxval, uint16_t samples)
{
    uint8_t i;
    float outdata = 0;                     /* 存放计算后的数字量 */
    float inc = (2 * 3.1415962) / samples; /* 计算相邻两个点的x轴间隔 */

    if(maxval <= (samples / 2))return ;	   /* 数据不合法 */

    for (i = 0; i < samples; i++)
    {
        /* 
         * 正弦波函数解析式:y = Asin(ωx + φ)+ b
         * 计算每个点的y值,将峰值放大maxval倍,并将曲线向上偏移maxval到正数区域
         * 注意:DAC无法输出负电压,所以需要将曲线向上偏移一个峰值的量,让整个曲线都落在正数区域
         */
        outdata = maxval * sin(inc * i) + maxval;
        if (outdata > 4095)
            outdata = 4095; /* 上限限定 */
        //printf("%f\r\n",outdata);
        g_dac_sin_buf[i] = outdata;
    }
}

int main(void)
{
    uint8_t t = 0;
    uint8_t key;
    
    HAL_Init();                         /* 初始化HAL库 */
    sys_stm32_clock_init(RCC_PLL_MUL9); /* 设置时钟, 72Mhz */
    delay_init(72);                     /* 延时初始化 */
    usart_init(115200);                 /* 串口初始化为115200 */
    led_init();                         /* 初始化LED */
    lcd_init();                         /* 初始化LCD */
    key_init();                         /* 初始化按键 */

    dac_dma_wave_init();
    
    lcd_show_string(30,  50, 200, 16, 16, "STM32", RED);
    lcd_show_string(30,  70, 200, 16, 16, "DAC DMA Sine WAVE TEST", RED);
    lcd_show_string(30,  90, 200, 16, 16, "ATOM@ALIENTEK", RED);
    lcd_show_string(30, 110, 200, 16, 16, "KEY0:3Khz  KEY1:30Khz", RED);
    
    dac_creat_sin_buf(2048, 100);
    dac_dma_wave_enable(100, 10 - 1, 72 - 1);  /* 100Khz触发频率, 100个点, 得到1Khz的正弦波 */
    
    while (1)
    {
        t++;
        key = key_scan(0);                                  /* 按键扫描 */

        if (key == KEY0_PRES)                               /* 高采样率 */
        {
            dac_creat_sin_buf(2048, 100);
            dac_dma_wave_enable(100, 10 - 1, 24 - 1);       /* 300Khz触发频率, 100个点, 得到最高3KHz的正弦波. */
        }
        else if (key == KEY1_PRES)                          /* 低采样率 */
        {
            dac_creat_sin_buf(2048, 10);
            dac_dma_wave_enable(10, 10 - 1, 24 - 1);        /* 300Khz触发频率, 10个点, 可以得到最高30KHz的正弦波. */
        }

        if (t == 40)        /* 定时时间到了 */
        {
            LED0_TOGGLE();  /* LED0闪烁 */
            t = 0;
        }

        delay_ms(5);
    }
}

PWM DAC实验

定时器输出PWM原理

PWM DAC 分辨率

实验功能

通过定时器1通道1(PA8)输出PWM,经过二阶RC滤波器,输出预设电压,

然后由ADC1通道1 (PA1) 采集,最后显示ADC转换的数字量及换算后的电压值。

源码

pwmdac.c

#include "./BSP/PWMDAC/pwmdac.h"


TIM_HandleTypeDef g_timx_pwm_chy_handle;

/* PWM DAC初始化 */
void pwmdac_init(uint16_t arr, uint16_t psc)
{
    TIM_OC_InitTypeDef timx_oc_pwm_chy = {0};
    
    g_timx_pwm_chy_handle.Instance = TIM1;
    g_timx_pwm_chy_handle.Init.Prescaler = psc;
    g_timx_pwm_chy_handle.Init.Period = arr;
    g_timx_pwm_chy_handle.Init.CounterMode = TIM_COUNTERMODE_UP;
    g_timx_pwm_chy_handle.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE;
    HAL_TIM_PWM_Init(&g_timx_pwm_chy_handle);
    
    timx_oc_pwm_chy.OCMode = TIM_OCMODE_PWM1;
    timx_oc_pwm_chy.Pulse = 0;
    timx_oc_pwm_chy.OCPolarity = TIM_OCPOLARITY_HIGH;
    HAL_TIM_PWM_ConfigChannel(&g_timx_pwm_chy_handle, &timx_oc_pwm_chy, TIM_CHANNEL_1);
    HAL_TIM_PWM_Start(&g_timx_pwm_chy_handle, TIM_CHANNEL_1);
}

/* TIM MSP初始化函数 */
void HAL_TIM_PWM_MspInit(TIM_HandleTypeDef *htim)
{
    if(htim->Instance == TIM1)
    {
        GPIO_InitTypeDef gpio_init_struct;
        __HAL_RCC_GPIOA_CLK_ENABLE();
        __HAL_RCC_TIM1_CLK_ENABLE();

        gpio_init_struct.Pin = GPIO_PIN_8;
        gpio_init_struct.Mode = GPIO_MODE_AF_PP;            /* 推挽复用 */
        gpio_init_struct.Pull = GPIO_PULLUP;                /* 上拉 */
        gpio_init_struct.Speed = GPIO_SPEED_FREQ_HIGH;      /* 高速 */
        HAL_GPIO_Init(GPIOA, &gpio_init_struct);
    }
}

/* 设置PWM DAC输出电压 */
void pwmdac_set_voltage(uint16_t vol)
{
    //输出电压为0-3.3v 用0-3300表示0-3.3
    float temp = vol;
    temp /= 1000;              //temp 表达的是f(t)的值(也就是电压)
    temp = temp * 256 / 3.3;  //temp 计算得到的结果是n(CCRx的值)
    __HAL_TIM_SET_COMPARE(&g_timx_pwm_chy_handle, TIM_CHANNEL_1, temp);
}

pwmdac.h

#ifndef __PWMDAC_H
#define __PWMDAC_H

#include "./SYSTEM/sys/sys.h"


void pwmdac_init(uint16_t arr, uint16_t psc);
void pwmdac_set_voltage(uint16_t vol);

#endif


main.c

#include "./SYSTEM/sys/sys.h"
#include "./SYSTEM/usart/usart.h"
#include "./SYSTEM/delay/delay.h"
#include "./BSP/LED/led.h"
#include "./BSP/LCD/lcd.h"
#include "./BSP/ADC/adc.h"
#include "./BSP/PWMDAC/pwmdac.h"


int main(void)
{
    uint16_t adcx;
    float temp;
    
    HAL_Init();                         /* 初始化HAL库 */
    sys_stm32_clock_init(RCC_PLL_MUL9); /* 设置时钟, 72Mhz */
    delay_init(72);                     /* 延时初始化 */
    usart_init(115200);                 /* 串口初始化为115200 */
    led_init();                         /* 初始化LED */
    lcd_init();                         /* 初始化LCD */
    adc_init();                         /* 初始化ADC */
    pwmdac_init(256 - 1, 0);
    
    pwmdac_set_voltage(2800);
    
    lcd_show_string(30, 50, 200, 16, 16, "STM32", RED);
    lcd_show_string(30, 70, 200, 16, 16, "ADC TEST", RED);
    lcd_show_string(30, 90, 200, 16, 16, "ATOM@ALIENTEK", RED);
    lcd_show_string(30, 110, 200, 16, 16, "ADC1_CH1_VOL:0.000V", BLUE); /* 先在固定位置显示小数点 */

    while (1)
    {
        adcx = adc_get_result();
 
        temp = (float)adcx * (3.3 / 4096);              /* 获取计算后的带小数的实际电压值,比如3.1111 */
        adcx = temp;                                    /* 赋值整数部分给adcx变量,因为adcx为u16整形 */
        lcd_show_xnum(134, 110, adcx, 1, 16, 0, BLUE);  /* 显示电压值的整数部分,3.1111的话,这里就是显示3 */

        temp -= adcx;                                   /* 把已经显示的整数部分去掉,留下小数部分,比如3.1111-3=0.1111 */
        temp *= 1000;                                   /* 小数部分乘以1000,例如:0.1111就转换为111.1,相当于保留三位小数。 */
        lcd_show_xnum(150, 110, temp, 3, 16, 0X80, BLUE);/* 显示小数部分(前面转换为了整形显示),这里显示的就是111. */

        LED0_TOGGLE();
        delay_ms(100);
    }
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1622236.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

DDR3简介

文章目录 前言一、ddr_stress_tester_v2.90配置流程二、将inc配置文件下载到板子上1.连接方式2.打开DDR_Tester 软件 uboot中DDR初始化的修改 前言 &#x1f4a6;DDR3在自己做完板子后需要验证下&#xff0c;测试DDR3是否能正常使用&#xff0c;如果不能正常使用&#xff0c;其…

测试实战哦

软件测试 测试用例&#xff1a;为了特定的目的而设计的一组测试输入&#xff0c;执行条件和预期结果的文档 用例ID&#xff0c;用例标题&#xff0c;测试项目&#xff0c;用例级别&#xff0c;预置条件&#xff0c;输入数据&#xff0c;执行步骤&#xff0c;预期结果 软件开发…

【项目经理沟通之道】项目管理必会的思维分析工具 07

作项目管理&#xff0c;除多沟通同步外&#xff0c;关键核心点&#xff0c;要学会诱导相关人&#xff0c;参与进来&#xff0c;真正认为自己是项目一份子&#xff0c;才能心往一处想&#xff0c;劲往一处使&#xff0c;团结一心才能干大事。 人性永远都是只对自己有益事情感兴…

游戏工作室为什么要使用海外住宅IP防封?

当谈到游戏工作室时&#xff0c;它们通常以多开游戏账号来获取收益为主要目标。这种商业模式在游戏产业中已经成为一个独特而且颇具潜力的领域。然而&#xff0c;随之而来的是防封问题&#xff0c;特别是当游戏工作室试图通过多开账号来赚取更多收益时。因此&#xff0c;我们有…

短视频账号矩阵系统==技术源头开发

短视频账号矩阵系统技术源头开发 一、短视频矩阵功能构建&#xff1a; 1. 关键词批量比距生成&#xff08;区域词行业词产品词&#xff09; 2. 多平台多账号一站式运营管理 3. 视频内容批量复制生成 4. 视频内容批量多平台投放 5. 视频数据分析及粉丝画像分布统计 6. 智能…

mongodb 分片集群认证

增加认证 副本间认证外部使用认证 如果是开启状态,先关闭路由,再关闭配置服务,最后关闭分片数据复本集中的每个mongod&#xff0c;从次节点开始。直到副本集的所 有成员都离线&#xff0c;包括任何仲裁者。主节点必须是最后一个成员关闭以避免潜在的回滚.最好通过 db.shutdow…

Git学习笔记(四)远程仓库

根据前面几篇文章的介绍&#xff0c;在本地使用Git基本不成问题了&#xff0c;常用的基本命令和一些基本概念基本也介绍完毕了。这一张主要讲讲远程仓库的创建和使用。 概念 其实在前面第一篇文章中&#xff0c;我们就简单介绍过远程仓库&#xff0c;它其实就是一个托管在远程服…

用于肺结节分类的常规 EHR 的纵向多模态Transformer集成成像和潜在临床特征

Longitudinal Multimodal Transformer Integrating Imaging and Latent Clinical Signatures from Routine EHRs for Pulmonary Nodule Classification 摘要 该研究提出了一种基于Transformer 的多模态策略&#xff0c;用于将重复成像与常规电子健康记录&#xff08;EHRs&…

【QT学习】9.绘图,三种贴图,贴图的转换,不规则贴图(透明泡泡),简单绘图工具制作

一。绘图的解释 Qt 中提供了强大的 2D 绘图系统&#xff0c;可以使用相同的 API 在屏幕和绘图设备上进行绘制&#xff0c;它主要基于QPainter、QPaintDevice 和 QPaintEngine 这三个类。 QPainter 用于执行绘图操作&#xff0c;其提供的 API 在 GUI 或 QImage、QOpenGLPaintDev…

亚马逊云科技提高企业生产力神器Amazon Q评测分析

一年一度的全球云计算春晚&#xff0c;亚马逊云科技Re:invent在2023年11月27于Vegas震撼来袭&#xff0c;其中最令人关注的就是CEO Adam在Keynote中分享的内容。其中一个新内容就是提升生产力神器: Amazon Q&#xff0c;可以说它重新定义了企业的工作模式。那具体它神在哪里呢&…

Flutter 有什么优异特性和革命性创新之处?

Flutter 有什么优异特性和革命性创新之处? 什么是 Flutter&#xff1f; Flutter mobile app SDK是一种新的方式来构建漂亮的原生移动应用程序&#xff0c;摆脱过去常见的“千篇一律”的应用程序。用过Flutter的人都对它赞赏有加&#xff1b; 相比较其他新型系统&#xff0c…

ETL工具-nifi干货系列 第十七讲 nifi Input PortOut Port 实战教程

1、端口&#xff08;Port&#xff09;&#xff0c;包含输入端口&#xff08;Input Port&#xff09;和输出端口&#xff08;Out Port &#xff09; 使用一个或多个处理组构建的数据流需要一种方式将处理组连接到其他数据流组件。 处理组和处理组之间可以通过使用端口来进行连…

<网络> HTTP

目录 前言&#xff1a; 一、再谈协议 &#xff08;一&#xff09;认识URL &#xff08;二&#xff09;Encode 和 Decode 二、HTTP 协议 &#xff08;一&#xff09;协议格式 &#xff08;二&#xff09;见一见请求 &#xff08;三&#xff09;见一见响应 三、模拟实现响…

github Copilot的使用总结

1. 代码建议和补全 GitHub Copilot 的基本使用涉及编写代码时的实时代码建议和补全。一旦你已经安装并配置好 GitHub Copilot 插件&#xff0c;你可以在支持的编辑器&#xff08;如 Visual Studio Code&#xff09;中开始使用 Copilot。以下是一些基本的使用步骤&#xff1a; …

hadoop文件操作代码实现

hadoop文件操作 目录 一、文件的上传 删除 查看 1.整体代码 2.代码运行 3.查看证实 4.具体代码解析 1&#xff09;向Hadoop传文件 2&#xff09;向本地Windows传文件 3&#xff09;删除Hadoop的文件 4&#xff09;判断文件是否存在 二、列出文件 1.整体代码 2.代码…

代码随想录算法训练营Day8 | ● 344.反转字符串● 541. 反转字符串II● 54.替换数字● 151.翻转字符串里的单词● 55.右旋转字符串

&#xff08;记得重学&#xff09; ● 344.反转字符串 题目&#xff1a;编写一个函数&#xff0c;其作用是将输入的字符串反转过来。输入字符串以字符数组 s 的形式给出。 不要给另外的数组分配额外的空间&#xff0c;你必须原地修改输入数组、使用 O(1) 的额外空间解决这一…

Unity 异常 bug

OverlapBoxNonAlloc 使用bug 环境&#xff1a; Unity2021.3.15 在测试场景中使用 OverlapBoxNonAlloc 测试检测没有问题 但是到了真实应用场景&#xff0c;使用 OverlapBoxNonAlloc 检测移动中的小怪 小怪碰撞体为&#xff1a;带有 Rigidbody 的Circle Collider 2D 就会出现异…

RustGUI学习(iced)之小部件(二):如何使用滑动条部件

前言 本专栏是学习Rust的GUI库iced的合集&#xff0c;将介绍iced涉及的各个小部件分别介绍&#xff0c;最后会汇总为一个总的程序。 iced是RustGUI中比较强大的一个&#xff0c;目前处于发展中&#xff08;即版本可能会改变&#xff09;&#xff0c;本专栏基于版本0.12.1. 概述…

力扣HOT100 - 994. 腐烂的橘子

解题思路&#xff1a; 因为要记录轮数&#xff08;分钟数&#xff09;&#xff0c;所以不能一口气遍历到底&#xff0c;所以不能用深搜&#xff08;bfs&#xff09;&#xff0c;而要用广搜&#xff08;bfs&#xff0c;层序遍历&#xff09;。 先记录下新鲜橘子数&#xff0c;…

MyBatis Dynamic SQL基本使用

MyBatis Dynamic SQL基本使用 一、概念二、特性Hamcrest是什么 三、MyBatis Dynamic SQL 快速入门3.1 环境准备3.2 定义表和列3.3 创建 MyBatis3 映射器3.4 使用 MyBatis3 执行 SQL 四、数据库对象表示4.1 表或视图表示4.2 表别名4.3 列表示 五、Where 子句支持5.1 简单的 wher…