MultiHeadAttention在Tensorflow中的实现原理

news2024/11/16 7:23:39


前言

通过这篇文章,你可以学习到Tensorflow实现MultiHeadAttention的底层原理。


一、MultiHeadAttention的本质内涵

1.Self_Atention机制

MultiHeadAttention是Self_Atention的多头堆嵌,有必要对Self_Atention机制进行一次深入浅出的理解,这也是MultiHeadAttention的核心所在。

Self_Attention并不直接使用输入向量,而是先将其进行映射,使得输入向量在每个位置上产生一个query和context,context充当字典。在context的每个位置都提供一个key和value向量。

query:尝试去获取某类信息的序列。

context:包含key序列和value序列,是query感兴趣的内容。

最终输出的形状将与query序列相同。

一个常见的类比是,这种操作就像字典查询。一个模糊的、可区分的、矢量的字典查询。

如下是一个普通的 python 字典类型数据,有 3 个键和 3 个值,并被传递给一个query——"What color is it ?"。这个query会与key="color"最契合,最终得到查询结果value="blue"

query是你要尝试去找的东西。key表示字典里有哪些信息,而value就是这些信息。当你在正则字典中查找一个query时,字典会找到匹配的key,并返回其相关的value。这个查询要么有一个匹配的键,要么没有。你可以想象一个模糊的字典,其中的键不一定要完全匹配。如果你在上面的字典中查找 query—"What species is it ?",也许你希望它返回 key="type",value="pickup",因为那是与query最匹配的key和value。

注意力层就像这样做了一个模糊查找,但它不仅仅是在寻找最好的key,而是根据query与每个key的匹配程度来组合这些value。

那是如何做到这一点的呢?在注意力层中,query、key和value都是向量。注意力层不是简单地做哈希查找,而是结合query和key向量来确定它们的匹配程度——计算query和key的向量点积,再将所有匹配程度经过Softmax映射完后,即得到 "注意力得分"。最终该层返回所有value的加权平均值,以 "注意力分数 "为权重。

对于一段具体的文本来说,每一个字都会引发一个疑问query,并提供一个关键值key和一个目标内容value。每个query都会去寻找感兴趣的key,并按注意力分数提取并组合value,

图中越粗的红线对应的attention权重更大,query与key的紧密程度也越近。attention权重如此分布也是很符合情理的,要想回答query =“他是谁?”,我们很大可能会在“是”后面寻找答案,因为“爱人”提供的信息最多,所以它俩的attention权重最大。

总的来说,Self_Attention模拟的是一个符合人脑思维逻辑的研究过程。每当遇到一些新的信息,我们总会产生一定量的疑问(query),为了解决疑问,我们需要在信息中捕捉关键字(key),进而凝练出该关键字中所蕴涵的答案(value)。特定的疑问(query)需要联系特定的关键字(key),进而得出最终答案,这个最终答案往往是折合了不同value而得来的。

2.MultiHead_Atention机制

在不同情景中,字引发的query是不同的,例如,

“他是男的,已婚。”

query可以是”他的性别是什么?”,或者”他结婚了吗?”。不同的query会产生不同的注意力分数。单一的Self_attention无法捕捉多层面query和key之间的依赖关系,因为它只进行一次attention的分配。意在解决此类局限性,MultiHead_Atention会计算多次Self_attention。

利用MultiHead_Atention机制,可以为每一个输入学习到一个信息量丰富的向量表示。

二、使MultiHeadAttention在TensorFlow中的代码实现

1.参数说明

TensorFlow中是用tf.keras.layers.MultiHeadAttention()实现的。它的参数分为两类,一种参数为初始化参数,存在于__init__方法中;另一种为调用参数,存在于call方法中。

主要的初始化参数:

num_heads:Self_Attention的层数

key_dim:query和key多头映射层的输出shape在axis=-1上的长度。因为后续需要计算query和key的点积,所以需要保证query和key在最后一个轴上的长度相等。

value_dim:value多头映射层的输出shape在axis=-1上的长度。如果不指定,则默认等于key_dim

output_shape:  指定输入经过整个MultiHeadAttention层后的输出shape,默认与进入query多头映射层的输入shape相同

主要的call方法参数:

'''  B即Batch_size,每一批中的样本数;

    T是query的个数,即一段序列产生的疑问个数;S是value和key的个数,即一段序列产生的关键字和关键信息的个数,序列产生的key和value是成对出现的,所以value映射层 和key映射层的输入张量在axis=1处的长度S相同。T和S是可以随意指定的,只需在样本集进入Embedding层之前,先通过一个dense层进行T和S的指定(T和S等于各自dense层中的神经元个数)。例如,文本集shape=(B, S),经过一个具有T个神经元的Dense层→shape=(B, T),再经Embedding层→shape=(B, T, dim),得到query映射层的输入张量。当然,如果不愿如此麻烦,可直接将经Embedding层得到shape=(B, S, dim)的张量作为query映射层的输入;

    dim通常是Embedding向量的长度(每个字对应一个Embedding向量)'''

query:输入query多头映射层且shape为(B, T, dim)的张量

value:输入value多头映射层且shape为(B, S, dim)的张量

key:输入key多头映射层且shape为(B, S, dim)的张量,如果未指定,则key=value

use_causal_mask:布尔值,是否开启causal_mask(因果掩码)机制

2.整体结构

tf.keras.layers.MultiHeadAttention类中call()方法的逻辑过程就是MultiHeadAttention的前向传播过程,我将其提炼成以下三部分,

        ''' 多头映射层 '''
        query = self._query_dense(query)
        key = self._key_dense(key)
        value = self._value_dense(value)
        
        ''' 注意力层 '''
        attention_output, attention_scores = self._compute_attention(
            query, key, value, attention_mask, training
        )
        
        ''' 输出层 '''
        attention_output = self._output_dense(attention_output)

3.多头映射层

由query多头映射层—query_dense,value多头映射层—value_dense,key多头映射层—key_dense组成。

每个映射层执行的张量运算是一样的,张量运算逻辑为,

                                                   ' abc , cde -> abde '               



该层的训练参数总数为,

4.注意力层

计算query与key之间的内积,张量运算逻辑为,

                                              ' aecd, abcd -> acbe '

内积能够反映向量之间的相关程度,内积结果越大则相关性越大,联系也越紧密。得到query和key的内积后,为了得到attention分数,需要将内积结果进行softmax映射。

sttention_scores张量可视作一个B行num_heads列的矩阵,其矩阵中的元素均是T行S列的注意力分数矩阵。当输入是大序列(比如音频序列)时,TransFormer需要维护的注意力分数矩阵将呈n^{2}曲线式增长,这种庞大的数据量将会对TransFormer训练和推理的效率和速度产生严重的影响,在内存上的要求也会成n^{2}曲线式增长。


最后利用attention分数对value进行加权叠加,张量运算逻辑为,

                                                        'acbe,aecd->abcd' 

  



注意:如果指定use_causal_mask=True引入Causal_Mask(因果掩码)机制,则在softmax映射时,会传入一个左下三角为True右上三角为False的,布尔类型的,且与attention_scores.shape相同掩码张量,此时掩码张量中为False的对应位置(对应attention内积张量)将会被softmax忽略。如此一来就会导致每个query只会与当前及其以前的key进行内积,并不会考虑未来的key。进而导致在每个query处产生的新value只会是当前value与过往value在sttention分数上的加权叠加。这样的结构是因果的,符合在预测中结果会对输入产生影响的因果逻辑。因果掩码会在Decoder中使用。


注意力层无可训练的参数。

5.输出映射层

属于MultiHeadAttention的最后一层,负责将注意力层得到的value在sttention分数上的加权叠加后的张量进行输出映射。张量运算逻辑为,

                                                       ' abcd, cde -> abe '



该层训练参数总共为,


验证

import tensorflow as tf


layer = tf.keras.layers.MultiHeadAttention(num_heads=2, key_dim=2)
target = tf.keras.Input(shape=[9, 16])
source = tf.keras.Input(shape=[4, 16])
output_tensor, weights = layer(query=target, value=source,
                               return_attention_scores=True)

''' 手动计算训练参数总数 '''
sum = 16*2*2*3+2*2*3+2*2*16+16
print(f'手动计算的训练参数总数为 : {sum}')
print(f'训练参数总共为 : {layer.count_params()}')
print(f'输出shape为 : {output_tensor.shape}')
print(f'注意力分数shape为 : {weights.shape}')



手动计算的训练参数总数为 : 284
训练参数总共为 : 284
输出shape为 : (None, 9, 16)
注意力分数shape为 : (None, 2, 9, 4)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1621950.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Docker 入门篇(一)-- 简介与安装教程(Windows和Linux)

一、Docker简介 Docker是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何Linux机器上,也可以实现虚拟化。容器是完全使用沙箱机制,相互之间没有任何接口(类似iPhon…

记录海豚调度器删除工作流实例失败的解决办法(DolphinScheduler的WebUI删除失败)

本博客记录以下问题解决办法:使用dolphinscheduler的WebUI运行工作流后出现内存占用过高导致的任务阻塞问题,并且在删除工作流实例时总是报错无法删除 解决步骤 在前端页面无法删除,于是搜索资料,发现可以登录数据库进行工作流实…

【C语言 |预处理指令】预处理指令详解(包括编译与链接)

目录 一、编译与链接 1.翻译环境 -预处理 -编译 -汇编 -链接 2.执行环境 二、预定义符号 三、#define定义常量 四、#define定义宏 五、带有副作用的宏参数 六、宏替换的规则 七、 宏函数的对比 八、#和## 1.#运算符 2.##运算符 九、命名约定 十、#undef 十一、 命…

【服务器部署篇】Linux下Tomcat安装和配置

作者介绍:本人笔名姑苏老陈,从事JAVA开发工作十多年了,带过刚毕业的实习生,也带过技术团队。最近有个朋友的表弟,马上要大学毕业了,想从事JAVA开发工作,但不知道从何处入手。于是,产…

Linux网络编程---Socket编程

一、网络套接字 一个文件描述符指向一个套接字(该套接字内部由内核借助两个缓冲区实现。) 在通信过程中,套接字一定是成对出现的 套接字通讯原理示意图: 二、预备知识 1. 网络字节序 内存中的多字节数据相对于内存地址有大端和小端之分 小端法&…

Ubuntu终端常用指令

cat cat 读取文件的内容 1、ls 一、 1、ll 显示当前目录下文件的详细信息,包括读写权限,文件大小,文件生成日期等(若想按照更改的时间先后排序,则需加-t参数,按时间降序(最新修改的时间排在最前)执行: $ ll -t, 按时间升序执行: $ ll -t | tac): ll 2、查看当前所处路径(完整…

Qt中常用对话框

Qt中的对话框(QDialog)是用户交互的重要组件,用于向用户提供特定的信息、请求输入、或进行决策。Qt提供了多种标准对话框以及用于自定义对话框的类。以下将详细介绍几种常用对话框的基本使用、使用技巧以及注意事项,并附带C示例代…

node.js 解析post请求 方法一

前提:依旧以前面发的node.js服务器动态资源处理代码 具体见 http://t.csdnimg.cn/TSNW9为模板,在这基础上进行修改。与动态资源处理代码不同的是,这次的用户信息我们借用表单来实现。post请求解析来获取和展示用户表单填写信息 1》代码难点&…

全彩屏负氧离子监测站的使用

TH-FZ5在繁忙的都市生活中,我们往往忽视了一个至关重要的问题——空气质量。随着工业化的进程加速,空气污染已成为影响人们健康的一大隐患。为了实时监测和了解身边的空气质量,全彩屏负氧离子监测站应运而生,成为了我们守护呼吸健…

企业集成平台建设方案(技术方案+功能设计)

企业集成平台建设方案及重点难点攻坚 基础支撑平台主要承担系统总体架构与各个应用子系统的交互,第三方系统与总体架构的交互。需要满足内部业务在该平台的基础上,实现平台对于子系统的可扩展性。基于以上分析对基础支撑平台,提出了以下要求&…

稀碎从零算法笔记Day59-LeetCode: 感染二叉树需要的总时间

题型:树、图、BFS、DFS 链接:2385. 感染二叉树需要的总时间 - 力扣(LeetCode) 来源:LeetCode 题目描述 给你一棵二叉树的根节点 root ,二叉树中节点的值 互不相同 。另给你一个整数 start 。在第 0 分钟…

25计算机考研院校数据分析 | 北京航空航天大学

北京航空航天大学(Beihang University),简称北航,由中华人民共和国工业和信息化部直属,中央直管副部级建制,位列“双一流”、"211工程”、"985工程”,入选“珠峰计划”、"2011计划”、“111计划”、&qu…

STM32标准库ADC和DMA知识点总结

目录 前言 一、ADC模数转换器 (1)AD单通道 (2)AD多通道 二、DMA原理和应用 (1)DMA数据转运(内存到内存) (2)DMAAD多同道(外设到内存&#x…

debian和ubuntu的核心系统和系统命令的区别

Debian和Ubuntu虽然有很深的渊源,都是基于Debian的发行版,但它们在核心系统和系统命令上还是有一些差别的。以下是一些主要的不同之处: 1. 发布周期: - Debian: Debian项目采用滚动发布模型,持续更新&a…

SpringCloud Alibaba--nacos配置中心

目录 一.基础介绍 1.1概念 1.2 功能 二.实现 2.1 依赖 2.2 新建配置文件 2.3 克隆 2.4 配置bootstap.yml文件 三.测试 一.基础介绍 1.1概念 在微服务架构中,配置中心就是统一管理各个微服务配置文件的服务。把传统的单体jar包拆分成多个微服务后&#xf…

到底什么是认证

认证和授权 什么是认证 认证 (Authentication) 是根据凭据验明访问者身份的流程。即验证“你是你所说的那个人”的过程。 身份认证,通常通过用户名/邮箱/手机号以及密码匹配来完成,也可以通过手机/邮箱验证码或者生物特征(如:指纹…

LangChain的核心模块和实战

主要模型 LLM:对话模型, 输入和输出都是文本Chat Model: 输入输出都是数据结构 模型IO设计 Format: 将提示词模版格式化Predict: langchain就是通过predict的方式调用不同的模型, 两个模型的区别不大, Chat Model 是以LLM为基础的.Parese: langchain还可以对结果进行干预, 得…

css盒子设置圆角边框的方法

前言 欢迎来到我的博客 个人主页:北岭敲键盘的荒漠猫-CSDN博客 本文为我整理的设置圆角边框的方法 需求描述 我们在设置盒子边框时,他总是方方正正的。 我们想让这个直直的边框委婉一点该怎么办呢。这个就提到了我们这篇文章讲的东西: bord…

二分查找知识点及练习题

知识点讲解 一、没有相同元素查找 请在一个有序递增数组中(不存在相同元素),采用二分查找,找出值x的位置,如果x在数组中不存在,请输出-1! 输入格式 第一行,一个整数n,代…

DevOps(十二)Jenkins实战之Web发布到远程服务器

前面两篇博文介绍了怎么将django开发的web应用推送到gitlab源码仓库,然后jenkins服务器从gitlab仓库拉下来,布署到jenkins服务器上,并用supervisor进行进程管理,保证web应用一直能正常运行,今天我们继续优化&#xff0…