STM32标准库ADC和DMA知识点总结

news2024/11/16 8:46:35

目录

前言

一、ADC模数转换器

(1)AD单通道

(2)AD多通道

二、DMA原理和应用

(1)DMA数据转运(内存到内存)

(2)DMA+AD多同道(外设到内存)


前言

最近想重温一下32标准库的内容,所以打算写几篇博客梳理一遍之前学过的知识点,图片和代码都是参考江科大的,江科大32教程非常不错,不管是小白还是大佬想学习32标准库都可以看他b站的课程。

一、ADC模数转换器

ADC简介:

逐次逼近型ADC:

ADC框图:

ADC基本结构:

输入通道:

通道

ADC1

ADC2

ADC3

通道0

PA0

PA0

PA0

通道1

PA1

PA1

PA1

通道2

PA2

PA2

PA2

通道3

PA3

PA3

PA3

通道4

PA4

PA4

PF6

通道5

PA5

PA5

PF7

通道6

PA6

PA6

PF8

通道7

PA7

PA7

PF9

通道8

PB0

PB0

PF10

通道9

PB1

PB1

通道10

PC0

PC0

PC0

通道11

PC1

PC1

PC1

通道12

PC2

PC2

PC2

通道13

PC3

PC3

PC3

通道14

PC4

PC4

通道15

PC5

PC5

通道16

温度传感器

通道17

内部参考电压

单次转换,非扫描模式:

连续转换,非扫描模式:

单次转换,扫描模式:

连续转换,扫描模式:

触发控制:

数据对齐:

转换时间:

校准:

硬件电路:

(1)AD单通道

面包板接线图:

代码示例:

AD.c

#include "stm32f10x.h"                  // Device header

/**
  * 函    数:AD初始化
  * 参    数:无
  * 返 回 值:无
  */
void AD_Init(void)
{
	/*开启时钟*/
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE);	//开启ADC1的时钟
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);	//开启GPIOA的时钟
	
	/*设置ADC时钟*/
	RCC_ADCCLKConfig(RCC_PCLK2_Div6);						//选择时钟6分频,ADCCLK = 72MHz / 6 = 12MHz
	
	/*GPIO初始化*/
	GPIO_InitTypeDef GPIO_InitStructure;
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0;
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOA, &GPIO_InitStructure);					//将PA0引脚初始化为模拟输入
	
	/*规则组通道配置*/
	ADC_RegularChannelConfig(ADC1, ADC_Channel_0, 1, ADC_SampleTime_55Cycles5);		//规则组序列1的位置,配置为通道0
	
	/*ADC初始化*/
	ADC_InitTypeDef ADC_InitStructure;						//定义结构体变量
	ADC_InitStructure.ADC_Mode = ADC_Mode_Independent;		//模式,选择独立模式,即单独使用ADC1
	ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;	//数据对齐,选择右对齐
	ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None;	//外部触发,使用软件触发,不需要外部触发
	ADC_InitStructure.ADC_ContinuousConvMode = DISABLE;		//连续转换,失能,每转换一次规则组序列后停止
	ADC_InitStructure.ADC_ScanConvMode = DISABLE;			//扫描模式,失能,只转换规则组的序列1这一个位置
	ADC_InitStructure.ADC_NbrOfChannel = 1;					//通道数,为1,仅在扫描模式下,才需要指定大于1的数,在非扫描模式下,只能是1
	ADC_Init(ADC1, &ADC_InitStructure);						//将结构体变量交给ADC_Init,配置ADC1
	
	/*ADC使能*/
	ADC_Cmd(ADC1, ENABLE);									//使能ADC1,ADC开始运行
	
	/*ADC校准*/
	ADC_ResetCalibration(ADC1);								//固定流程,内部有电路会自动执行校准
	while (ADC_GetResetCalibrationStatus(ADC1) == SET);
	ADC_StartCalibration(ADC1);
	while (ADC_GetCalibrationStatus(ADC1) == SET);
}

/**
  * 函    数:获取AD转换的值
  * 参    数:无
  * 返 回 值:AD转换的值,范围:0~4095
  */
uint16_t AD_GetValue(void)
{
	ADC_SoftwareStartConvCmd(ADC1, ENABLE);					//软件触发AD转换一次
	while (ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC) == RESET);	//等待EOC标志位,即等待AD转换结束
	return ADC_GetConversionValue(ADC1);					//读数据寄存器,得到AD转换的结果
}

AD.h

#ifndef __AD_H
#define __AD_H

void AD_Init(void);
uint16_t AD_GetValue(void);

#endif

main.c

#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "AD.h"

uint16_t ADValue;			//定义AD值变量
float Voltage;				//定义电压变量

int main(void)
{
	/*模块初始化*/
	OLED_Init();			//OLED初始化
	AD_Init();				//AD初始化
	
	/*显示静态字符串*/
	OLED_ShowString(1, 1, "ADValue:");
	OLED_ShowString(2, 1, "Voltage:0.00V");
	
	while (1)
	{
		ADValue = AD_GetValue();					//获取AD转换的值
		Voltage = (float)ADValue / 4095 * 3.3;		//将AD值线性变换到0~3.3的范围,表示电压
		
		OLED_ShowNum(1, 9, ADValue, 4);				//显示AD值
		OLED_ShowNum(2, 9, Voltage, 1);				//显示电压值的整数部分
		OLED_ShowNum(2, 11, (uint16_t)(Voltage * 100) % 100, 2);	//显示电压值的小数部分
		
		Delay_ms(100);			//延时100ms,手动增加一些转换的间隔时间
	}
}

(2)AD多通道

面包板接线:

代码示例:

AD.c

#include "stm32f10x.h"                  // Device header

/**
  * 函    数:AD初始化
  * 参    数:无
  * 返 回 值:无
  */
void AD_Init(void)
{
	/*开启时钟*/
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE);	//开启ADC1的时钟
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);	//开启GPIOA的时钟
	
	/*设置ADC时钟*/
	RCC_ADCCLKConfig(RCC_PCLK2_Div6);						//选择时钟6分频,ADCCLK = 72MHz / 6 = 12MHz
	
	/*GPIO初始化*/
	GPIO_InitTypeDef GPIO_InitStructure;
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_3;
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOA, &GPIO_InitStructure);					//将PA0、PA1、PA2和PA3引脚初始化为模拟输入
	
	/*不在此处配置规则组序列,而是在每次AD转换前配置,这样可以灵活更改AD转换的通道*/
	
	/*ADC初始化*/
	ADC_InitTypeDef ADC_InitStructure;						//定义结构体变量
	ADC_InitStructure.ADC_Mode = ADC_Mode_Independent;		//模式,选择独立模式,即单独使用ADC1
	ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;	//数据对齐,选择右对齐
	ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None;	//外部触发,使用软件触发,不需要外部触发
	ADC_InitStructure.ADC_ContinuousConvMode = DISABLE;		//连续转换,失能,每转换一次规则组序列后停止
	ADC_InitStructure.ADC_ScanConvMode = DISABLE;			//扫描模式,失能,只转换规则组的序列1这一个位置
	ADC_InitStructure.ADC_NbrOfChannel = 1;					//通道数,为1,仅在扫描模式下,才需要指定大于1的数,在非扫描模式下,只能是1
	ADC_Init(ADC1, &ADC_InitStructure);						//将结构体变量交给ADC_Init,配置ADC1
	
	/*ADC使能*/
	ADC_Cmd(ADC1, ENABLE);									//使能ADC1,ADC开始运行
	
	/*ADC校准*/
	ADC_ResetCalibration(ADC1);								//固定流程,内部有电路会自动执行校准
	while (ADC_GetResetCalibrationStatus(ADC1) == SET);
	ADC_StartCalibration(ADC1);
	while (ADC_GetCalibrationStatus(ADC1) == SET);
}

/**
  * 函    数:获取AD转换的值
  * 参    数:ADC_Channel 指定AD转换的通道,范围:ADC_Channel_x,其中x可以是0/1/2/3
  * 返 回 值:AD转换的值,范围:0~4095
  */
uint16_t AD_GetValue(uint8_t ADC_Channel)
{
	ADC_RegularChannelConfig(ADC1, ADC_Channel, 1, ADC_SampleTime_55Cycles5);	//在每次转换前,根据函数形参灵活更改规则组的通道1
	ADC_SoftwareStartConvCmd(ADC1, ENABLE);					//软件触发AD转换一次
	while (ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC) == RESET);	//等待EOC标志位,即等待AD转换结束
	return ADC_GetConversionValue(ADC1);					//读数据寄存器,得到AD转换的结果
}

AD.h

#ifndef __AD_H
#define __AD_H

void AD_Init(void);
uint16_t AD_GetValue(uint8_t ADC_Channel);

#endif

main.c

#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "AD.h"

uint16_t AD0, AD1, AD2, AD3;	//定义AD值变量

int main(void)
{
	/*模块初始化*/
	OLED_Init();				//OLED初始化
	AD_Init();					//AD初始化
	
	/*显示静态字符串*/
	OLED_ShowString(1, 1, "AD0:");
	OLED_ShowString(2, 1, "AD1:");
	OLED_ShowString(3, 1, "AD2:");
	OLED_ShowString(4, 1, "AD3:");
	
	while (1)
	{
		AD0 = AD_GetValue(ADC_Channel_0);		//单次启动ADC,转换通道0
		AD1 = AD_GetValue(ADC_Channel_1);		//单次启动ADC,转换通道1
		AD2 = AD_GetValue(ADC_Channel_2);		//单次启动ADC,转换通道2
		AD3 = AD_GetValue(ADC_Channel_3);		//单次启动ADC,转换通道3
		
		OLED_ShowNum(1, 5, AD0, 4);				//显示通道0的转换结果AD0
		OLED_ShowNum(2, 5, AD1, 4);				//显示通道1的转换结果AD1
		OLED_ShowNum(3, 5, AD2, 4);				//显示通道2的转换结果AD2
		OLED_ShowNum(4, 5, AD3, 4);				//显示通道3的转换结果AD3
		
		Delay_ms(100);			//延时100ms,手动增加一些转换的间隔时间
	}
}

 HAL库实验可看:STM32 ADC介绍和应用_mq-4 adc-CSDN博客

二、DMA原理和应用

DMA简介:

存储器映像:

RAM:随机存取存储器(英语:Random Access Memory,缩写:RAM),也叫主存,是与CPU直接交换数据的内部存储器。

ROM:(只读内存(Read-Only Memory)简称)英文简称ROM。ROM所存数据,一般是装入整机前事先写好的,整机工作过程中只能读出,而不像随机存储器那样能快速地、方便地加以改写。

DMA框图:

DMA基本结构:

DMA请求:

数据宽度与对齐:简单来说就是高位补零或者取高位舍低位

数据转运+DMA:

ADC扫描模式+DMA:

(1)DMA数据转运(内存到内存)

DMA.c

#include "stm32f10x.h"                  // Device header

uint16_t MyDMA_Size;					//定义全局变量,用于记住Init函数的Size,供Transfer函数使用

/**
  * 函    数:DMA初始化
  * 参    数:AddrA 原数组的首地址
  * 参    数:AddrB 目的数组的首地址
  * 参    数:Size 转运的数据大小(转运次数)
  * 返 回 值:无
  */
void MyDMA_Init(uint32_t AddrA, uint32_t AddrB, uint16_t Size)
{
	MyDMA_Size = Size;					//将Size写入到全局变量,记住参数Size
	
	/*开启时钟*/
	RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE);						//开启DMA的时钟
	
	/*DMA初始化*/
	DMA_InitTypeDef DMA_InitStructure;										//定义结构体变量
	DMA_InitStructure.DMA_PeripheralBaseAddr = AddrA;						//外设基地址,给定形参AddrA
	DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte;	//外设数据宽度,选择字节
	DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Enable;			//外设地址自增,选择使能
	DMA_InitStructure.DMA_MemoryBaseAddr = AddrB;							//存储器基地址,给定形参AddrB
	DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte;			//存储器数据宽度,选择字节
	DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;					//存储器地址自增,选择使能
	DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC;						//数据传输方向,选择由外设到存储器
	DMA_InitStructure.DMA_BufferSize = Size;								//转运的数据大小(转运次数)
	DMA_InitStructure.DMA_Mode = DMA_Mode_Normal;							//模式,选择正常模式
	DMA_InitStructure.DMA_M2M = DMA_M2M_Enable;								//存储器到存储器,选择使能
	DMA_InitStructure.DMA_Priority = DMA_Priority_Medium;					//优先级,选择中等
	DMA_Init(DMA1_Channel1, &DMA_InitStructure);							//将结构体变量交给DMA_Init,配置DMA1的通道1
	
	/*DMA使能*/
	DMA_Cmd(DMA1_Channel1, DISABLE);	//这里先不给使能,初始化后不会立刻工作,等后续调用Transfer后,再开始
}

/**
  * 函    数:启动DMA数据转运
  * 参    数:无
  * 返 回 值:无
  */
void MyDMA_Transfer(void)
{
	DMA_Cmd(DMA1_Channel1, DISABLE);					//DMA失能,在写入传输计数器之前,需要DMA暂停工作
	DMA_SetCurrDataCounter(DMA1_Channel1, MyDMA_Size);	//写入传输计数器,指定将要转运的次数
	DMA_Cmd(DMA1_Channel1, ENABLE);						//DMA使能,开始工作
	
	while (DMA_GetFlagStatus(DMA1_FLAG_TC1) == RESET);	//等待DMA工作完成
	DMA_ClearFlag(DMA1_FLAG_TC1);						//清除工作完成标志位
}

DMA.h

#ifndef __MYDMA_H
#define __MYDMA_H

void MyDMA_Init(uint32_t AddrA, uint32_t AddrB, uint16_t Size);
void MyDMA_Transfer(void);

#endif

main.c

#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "MyDMA.h"

uint8_t DataA[] = {0x01, 0x02, 0x03, 0x04};				//定义测试数组DataA,为数据源
uint8_t DataB[] = {0, 0, 0, 0};							//定义测试数组DataB,为数据目的地

int main(void)
{
	/*模块初始化*/
	OLED_Init();				//OLED初始化
	
	MyDMA_Init((uint32_t)DataA, (uint32_t)DataB, 4);	//DMA初始化,把源数组和目的数组的地址传入
	
	/*显示静态字符串*/
	OLED_ShowString(1, 1, "DataA");
	OLED_ShowString(3, 1, "DataB");
	
	/*显示数组的首地址*/
	OLED_ShowHexNum(1, 8, (uint32_t)DataA, 8);
	OLED_ShowHexNum(3, 8, (uint32_t)DataB, 8);
		
	while (1)
	{
		DataA[0] ++;		//变换测试数据
		DataA[1] ++;
		DataA[2] ++;
		DataA[3] ++;
		
		OLED_ShowHexNum(2, 1, DataA[0], 2);		//显示数组DataA
		OLED_ShowHexNum(2, 4, DataA[1], 2);
		OLED_ShowHexNum(2, 7, DataA[2], 2);
		OLED_ShowHexNum(2, 10, DataA[3], 2);
		OLED_ShowHexNum(4, 1, DataB[0], 2);		//显示数组DataB
		OLED_ShowHexNum(4, 4, DataB[1], 2);
		OLED_ShowHexNum(4, 7, DataB[2], 2);
		OLED_ShowHexNum(4, 10, DataB[3], 2);
		
		Delay_ms(1000);		//延时1s,观察转运前的现象
		
		MyDMA_Transfer();	//使用DMA转运数组,从DataA转运到DataB
		
		OLED_ShowHexNum(2, 1, DataA[0], 2);		//显示数组DataA
		OLED_ShowHexNum(2, 4, DataA[1], 2);
		OLED_ShowHexNum(2, 7, DataA[2], 2);
		OLED_ShowHexNum(2, 10, DataA[3], 2);
		OLED_ShowHexNum(4, 1, DataB[0], 2);		//显示数组DataB
		OLED_ShowHexNum(4, 4, DataB[1], 2);
		OLED_ShowHexNum(4, 7, DataB[2], 2);
		OLED_ShowHexNum(4, 10, DataB[3], 2);

		Delay_ms(1000);		//延时1s,观察转运后的现象
	}
}

(2)DMA+AD多同道(外设到内存)

面包板接线:

代码示例:

AD_DMA.c

#include "stm32f10x.h"                  // Device header

uint16_t AD_Value[4];					//定义用于存放AD转换结果的全局数组

/**
  * 函    数:AD初始化
  * 参    数:无
  * 返 回 值:无
  */
void AD_Init(void)
{
	/*开启时钟*/
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE);	//开启ADC1的时钟
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);	//开启GPIOA的时钟
	RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE);		//开启DMA1的时钟
	
	/*设置ADC时钟*/
	RCC_ADCCLKConfig(RCC_PCLK2_Div6);						//选择时钟6分频,ADCCLK = 72MHz / 6 = 12MHz
	
	/*GPIO初始化*/
	GPIO_InitTypeDef GPIO_InitStructure;
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_3;
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOA, &GPIO_InitStructure);					//将PA0、PA1、PA2和PA3引脚初始化为模拟输入
	
	/*规则组通道配置*/
	ADC_RegularChannelConfig(ADC1, ADC_Channel_0, 1, ADC_SampleTime_55Cycles5);	//规则组序列1的位置,配置为通道0
	ADC_RegularChannelConfig(ADC1, ADC_Channel_1, 2, ADC_SampleTime_55Cycles5);	//规则组序列2的位置,配置为通道1
	ADC_RegularChannelConfig(ADC1, ADC_Channel_2, 3, ADC_SampleTime_55Cycles5);	//规则组序列3的位置,配置为通道2
	ADC_RegularChannelConfig(ADC1, ADC_Channel_3, 4, ADC_SampleTime_55Cycles5);	//规则组序列4的位置,配置为通道3
	
	/*ADC初始化*/
	ADC_InitTypeDef ADC_InitStructure;											//定义结构体变量
	ADC_InitStructure.ADC_Mode = ADC_Mode_Independent;							//模式,选择独立模式,即单独使用ADC1
	ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;						//数据对齐,选择右对齐
	ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None;			//外部触发,使用软件触发,不需要外部触发
	ADC_InitStructure.ADC_ContinuousConvMode = ENABLE;							//连续转换,使能,每转换一次规则组序列后立刻开始下一次转换
	ADC_InitStructure.ADC_ScanConvMode = ENABLE;								//扫描模式,使能,扫描规则组的序列,扫描数量由ADC_NbrOfChannel确定
	ADC_InitStructure.ADC_NbrOfChannel = 4;										//通道数,为4,扫描规则组的前4个通道
	ADC_Init(ADC1, &ADC_InitStructure);											//将结构体变量交给ADC_Init,配置ADC1
	
	/*DMA初始化*/
	DMA_InitTypeDef DMA_InitStructure;											//定义结构体变量
	DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)&ADC1->DR;				//外设基地址,给定形参AddrA
	DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord;	//外设数据宽度,选择半字,对应16为的ADC数据寄存器
	DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;			//外设地址自增,选择失能,始终以ADC数据寄存器为源
	DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)AD_Value;					//存储器基地址,给定存放AD转换结果的全局数组AD_Value
	DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord;			//存储器数据宽度,选择半字,与源数据宽度对应
	DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;						//存储器地址自增,选择使能,每次转运后,数组移到下一个位置
	DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC;							//数据传输方向,选择由外设到存储器,ADC数据寄存器转到数组
	DMA_InitStructure.DMA_BufferSize = 4;										//转运的数据大小(转运次数),与ADC通道数一致
	DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;								//模式,选择循环模式,与ADC的连续转换一致
	DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;								//存储器到存储器,选择失能,数据由ADC外设触发转运到存储器
	DMA_InitStructure.DMA_Priority = DMA_Priority_Medium;						//优先级,选择中等
	DMA_Init(DMA1_Channel1, &DMA_InitStructure);								//将结构体变量交给DMA_Init,配置DMA1的通道1
	
	/*DMA和ADC使能*/
	DMA_Cmd(DMA1_Channel1, ENABLE);							//DMA1的通道1使能
	ADC_DMACmd(ADC1, ENABLE);								//ADC1触发DMA1的信号使能
	ADC_Cmd(ADC1, ENABLE);									//ADC1使能
	
	/*ADC校准*/
	ADC_ResetCalibration(ADC1);								//固定流程,内部有电路会自动执行校准
	while (ADC_GetResetCalibrationStatus(ADC1) == SET);
	ADC_StartCalibration(ADC1);
	while (ADC_GetCalibrationStatus(ADC1) == SET);
	
	/*ADC触发*/
	ADC_SoftwareStartConvCmd(ADC1, ENABLE);	//软件触发ADC开始工作,由于ADC处于连续转换模式,故触发一次后ADC就可以一直连续不断地工作
}

AD_DMA.h

#ifndef __AD_H
#define __AD_H

extern uint16_t AD_Value[4];

void AD_Init(void);

#endif

main.c

#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "AD.h"

int main(void)
{
	/*模块初始化*/
	OLED_Init();				//OLED初始化
	AD_Init();					//AD初始化
	
	/*显示静态字符串*/
	OLED_ShowString(1, 1, "AD0:");
	OLED_ShowString(2, 1, "AD1:");
	OLED_ShowString(3, 1, "AD2:");
	OLED_ShowString(4, 1, "AD3:");
	
	while (1)
	{
		OLED_ShowNum(1, 5, AD_Value[0], 4);		//显示转换结果第0个数据
		OLED_ShowNum(2, 5, AD_Value[1], 4);		//显示转换结果第1个数据
		OLED_ShowNum(3, 5, AD_Value[2], 4);		//显示转换结果第2个数据
		OLED_ShowNum(4, 5, AD_Value[3], 4);		//显示转换结果第3个数据
		
		Delay_ms(100);							//延时100ms,手动增加一些转换的间隔时间
	}
}

 HAL库实验可看:STM32DMA原理和应用_stm32dma应用-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1621933.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

debian和ubuntu的核心系统和系统命令的区别

Debian和Ubuntu虽然有很深的渊源,都是基于Debian的发行版,但它们在核心系统和系统命令上还是有一些差别的。以下是一些主要的不同之处: 1. 发布周期: - Debian: Debian项目采用滚动发布模型,持续更新&a…

SpringCloud Alibaba--nacos配置中心

目录 一.基础介绍 1.1概念 1.2 功能 二.实现 2.1 依赖 2.2 新建配置文件 2.3 克隆 2.4 配置bootstap.yml文件 三.测试 一.基础介绍 1.1概念 在微服务架构中,配置中心就是统一管理各个微服务配置文件的服务。把传统的单体jar包拆分成多个微服务后&#xf…

到底什么是认证

认证和授权 什么是认证 认证 (Authentication) 是根据凭据验明访问者身份的流程。即验证“你是你所说的那个人”的过程。 身份认证,通常通过用户名/邮箱/手机号以及密码匹配来完成,也可以通过手机/邮箱验证码或者生物特征(如:指纹…

LangChain的核心模块和实战

主要模型 LLM:对话模型, 输入和输出都是文本Chat Model: 输入输出都是数据结构 模型IO设计 Format: 将提示词模版格式化Predict: langchain就是通过predict的方式调用不同的模型, 两个模型的区别不大, Chat Model 是以LLM为基础的.Parese: langchain还可以对结果进行干预, 得…

css盒子设置圆角边框的方法

前言 欢迎来到我的博客 个人主页:北岭敲键盘的荒漠猫-CSDN博客 本文为我整理的设置圆角边框的方法 需求描述 我们在设置盒子边框时,他总是方方正正的。 我们想让这个直直的边框委婉一点该怎么办呢。这个就提到了我们这篇文章讲的东西: bord…

二分查找知识点及练习题

知识点讲解 一、没有相同元素查找 请在一个有序递增数组中(不存在相同元素),采用二分查找,找出值x的位置,如果x在数组中不存在,请输出-1! 输入格式 第一行,一个整数n,代…

DevOps(十二)Jenkins实战之Web发布到远程服务器

前面两篇博文介绍了怎么将django开发的web应用推送到gitlab源码仓库,然后jenkins服务器从gitlab仓库拉下来,布署到jenkins服务器上,并用supervisor进行进程管理,保证web应用一直能正常运行,今天我们继续优化&#xff0…

政安晨:【深度学习神经网络基础】(十三)—— 卷积神经网络

目录 概述 LeNet-5 卷积层 最大池层 稠密层 针对MNIST数据集的卷积神经网络 总之 政安晨的个人主页:政安晨 欢迎 👍点赞✍评论⭐收藏 收录专栏: 政安晨的机器学习笔记 希望政安晨的博客能够对您有所裨益,如有不足之处,欢迎…

绿色便携方式安装apache+mysql+tomcat+php集成环境并提供控制面板

绿色便携方式安装带控制面板的ApacheMariaDBTomcatPHP集成环境 目录 绿色便携方式安装带控制面板的ApacheMariaDBTomcatPHP集成环境[TOC](目录) 前言一、XAMPP二、安装和使用1.安装2.使用 三、可能的错误1、检查端口占用2、修改端口 前言 安装集成环境往往配置复杂&#xff0c…

Gradio 最快创建Web 界面部署到服务器并演示机器学习模型,本文提供教学案例以及部署方法,避免使用繁琐的django

最近学习hugging face里面的物体检测模型,发现一个方便快捷的工具! Gradio 是通过友好的 Web 界面演示机器学习模型的最快方式,以便任何人都可以在任何地方使用它! 一、核心优势: 使用这个开发这种演示机器学习模型的…

leetcode-比较版本号-88

题目要求 思路 1.因为字符串比较大小不方便,并且因为需要去掉前导的0,这个0我们并不知道有几个,将字符串转换为数字刚好能避免。 2.当判断到符号位的时候加加,跳过符号位。 3.判断数字大小,来决定版本号大小 4.核心代…

LabVIEW和MES系统的智能化车间数据对接

LabVIEW和MES系统的智能化车间数据对接 随着工业4.0时代的到来,智能制造成为推动制造业高质量发展的重要手段。其中,数字化车间作为智能制造的重要组成部分,其设计与实现至关重要。在数字化车间环境下,如何利用LabVIEW软件与MES系…

2024 年 Rust 开发者路线图

Rust 近年来因其对性能、安全性和并发性的关注而广受欢迎。作为一名开发人员,掌握 Rust 可以为各种机会打开大门,包括 Web 开发。 在 github 上发现了这个优秀的路线图,由 Anshul Goyal 创建,它提供了一条全面的路径,概…

第十五届蓝桥杯省赛第二场C/C++B组A题【进制】题解

解题思路 按照题意进行模拟&#xff0c;计算 x x x 的 b b b 进制过程中&#xff0c;若出现余数大于 9 9 9&#xff0c;则说明 x x x 的 b b b 进制一定要用字母进行表示。 #include <iostream> #include <cstring> #include <algorithm> #include &l…

大数据Hive中的UDF:自定义数据处理的利器(上)

文章目录 1. 前言2. UDF与宏及静态表的对比3. 深入理解UDF4. 实现自定义UDF 1. 前言 在大数据技术栈中&#xff0c;Apache Hive 扮演着数据仓库的关键角色&#xff0c;它提供了丰富的数据操作功能&#xff0c;并通过类似于 SQL 的 HiveQL 语言简化了对 Hadoop 数据的处理。然而…

configure: error: library ‘crypto‘ is required for OpenSSL

1、执行命令./configure --prefix/usr/local/pgsql/postgresql-14.2 --with-openssl 报错configure: error: library crypto is required for OpenSSL 2、解决办法 yum install openssl openssl-devel

Kafka 3.x.x 入门到精通(02)——对标尚硅谷Kafka教程

Kafka 3.x.x 入门到精通&#xff08;02&#xff09;——对标尚硅谷Kafka教程 2. Kafka基础2.1 集群部署2.1.1 解压文件2.1.2 安装ZooKeeper2.1.3 安装Kafka2.1.4 封装启动脚本 2.2 集群启动2.2.1 相关概念2.2.1.1 代理&#xff1a;Broker2.2.1.2 控制器&#xff1a;Controller …

爬虫学习笔记-数美验证

测试网址&#xff1a;智能验证码体验_图片验证码_数美科技数美科技智能验证码在线体验&#xff0c;智能识别风险用户级别&#xff0c;自行切换智能验证码难度及类型&#xff0c;提供滑动、拼图、点选、数字、动态等多种智能验证码服务&#xff0c;精准拦截机器行为。https://ww…

AIGC-stable-diffusion(文本生成图片)+PaddleHub/HuggingFace

功能 stable-diffusion(文本生成图片)PaddleHub&#xff0c;HuggingFace两种调用方式 PaddleHub 环境 pip install paddlepaddle-gpu pip install paddlehub 代码 from PIL import Image import paddlehub as hub module hub.Module(namestable_diffusion)## 保存在demo…

智能驾驶+网络安全

在智能驾驶场景下&#xff0c;安全问题一直是一个持续热点。 针对车机模块不被黑客利用Linux的漏洞攻击&#xff0c;可以采取以下几种方式来提高安全性&#xff1a; 安全设计和防护&#xff1a;在设计车机模块时&#xff0c;需要考虑安全性&#xff0c;并采取相应的安全防护措施…