新技术前沿-2024-大型语言模型LLM的本地化部署

news2024/11/18 22:58:00

参考快速入门LLM
参考究竟什么是神经网络

1 深度学习

1.1 神经网络和深度学习

神经网络是一种模拟人脑神经元工作方式的机器学习算法,也是深度学习算法的基本构成块。神经网络由多个相互连接的节点(也称为神经元或人工神经元)组成,这些节点被组织成层次结构。通过训练,神经网络可以学习从输入数据(例如图像、文本或声音)中提取有用的特征,并根据这些特征进行分类、预测或其他任务。
在这里插入图片描述

神经网络是一种机器学习算法,但它与传统机器学习在几个关键方面有所不同。其中一个重要的区别是神经网络能够自我学习和改进,不需要人为干预。通过训练,神经网络可以 自动从数据中提取有用的特征,这使得它在处理大规模数据集时具有优势。相比之下,传统机器学习算法通常需要手动选择和提供特征

深度学习的一个关键优势是它处理大数据的能力,随着数据量的增加,传统机器学习技术在性能和准确性方面可能会变得效率低下。而深度学习算法,由于其强大的表示能力和对数据的强大处理能力,仍然能够保持良好的性能和准确性。这使得深度学习成为数据密集型应用的理想选择,尤其适用于处理大规模数据集。

深入理解深度学习的底层结构可以帮助我们更好地设计和改进模型,以及更好地解释和调试模型的结果。虽然使用计算机自动生成输出可以提供一些初步的结果,但对深度学习结构的理解可以帮助我们更好地理解模型的工作原理,发现潜在的问题,以及进行更有针对性的改进。

(1)通过分析神经网络的结构,我们可以找到优化它的方法,来获得更好的性能。例如,我们可以调整层数或节点数,或者调整网络处理输入数据的方式,来改进网络的预测或分类准确率。
(2)此外,通过了解神经网络的结构和运作原理,可以开发出更适合特定任务的神经网络。例如,可以利用神经网络分析医学图像,以辅助疾病诊断或提高医学影像分析的准确性。在股市预测方面,神经网络也可以用于分析大量的历史数据和市场动态,以预测未来的股票价格走势。

1.2 神经网络的工作原理

每个神经元代表一个计算单元,它接收一组输入,执行一组计算,并产生一个输出,该输出被传递到下一层。就像我们大脑中的神经元一样,神经网络中的每个节点都会接收输入,对其进行处理,并将输出传递给下一个节点。
在这里插入图片描述

随着数据在网络中移动,节点之间的连接会根据数据中的模式而增强或减弱。这使得网络能够从数据中学习,并根据所学内容进行预测或决策
(1)网格的行被排列成水平的一维阵列,然后被转换为垂直阵列,形成第一层神经元。就像这样;
请添加图片描述
(2)输入层
在第一层的情况下,每个神经元对应于输入图像中的一个像素,每个神经元内的值表示该像素的激活或强度。神经网络的输入层负责接收原始数据(在本例中为图像),并将其转换为可以由网络其余部分处理的格式。在这种情况下,我们有28x28个输入像素,在输入层中总共给我们784个神经元。每个神经元的激活值是0或1,取决于输入图像中相应的像素分别是黑色还是白色。
在这里插入图片描述
(3)输出层
在这种情况下,神经网络的输出层由10个神经元组成,每个神经元代表一个可能的输出类(在这种情况下,数字0到9)。输出层中每个神经元的输出表示输入图像属于该特定类的概率。最高概率值决定了该输入图像的预测类。

(4)隐藏层
在输入层和输出层之间,我们有一个或多个隐藏层,对输入数据执行一系列非线性变换。这些隐藏层的目的是从输入数据中提取更高层次的特征,这些特征对于手头的任务更有意义。
你想在你的网络中添加多少个隐藏层取决于你。
在这里插入图片描述
隐藏层中的每个神经元接收来自前一层所有神经元的输入,并在将这些输入传递给非线性激活函数之前,对它们应用一组权重和偏置。
这个过程在隐藏层中的所有神经元上重复,直到到达输出层。

1.3 神经网络的专业术语

一、前向传播
前向传播是通过神经网络传递输入数据以生成输出的过程。它涉及通过将权重和偏置应用于输入并将结果传递通过激活函数来计算网络每一层中每个神经元的输出
在这里插入图片描述
其中y是神经网络的输出,f是非线性激活函数。
二、反向传播
反向传播是一种在训练神经网络时常用的优化算法。
请添加图片描述
反向传播算法的工作原理就是将输出层的误差反向传播回网络各层,并利用微积分中的链式法则计算损失函数相对于每个权重的梯度

它的核心思想是计算损失函数对网络中每个权重的梯度,然后根据这些梯度来更新权重,以最小化损失函数。通过不断地迭代这个过程,神经网络的权重可以得到调整和优化,从而提高网络的预测准确性和泛化能力。

反向传播算法在深度学习领域中非常重要,它是许多现代神经网络模型训练的基础。
三、神经网络的训练:基于输入数据和期望输出调整神经网络权值的过程,以提高网络预测的准确性。

四、权重:权重是指训练过程中学习的参数,它们决定了神经元之间连接的强度。神经元之间的每个连接都被赋予一个权重,该权重乘以神经元的输入值以确定其输出。
在这里插入图片描述
五、偏差:偏差是另一个学习参数,它被添加到给定层中神经元的输入加权和中。它是神经元的额外输入,有助于调整激活函数的输出。

六、非线性激活函数:非线性激活函数应用于神经元的输出,以将非线性引入网络。非线性很重要࿰

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1620999.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Linux】谈谈shell外壳是什么?

💐 🌸 🌷 🍀 🌹 🌻 🌺 🍁 🍃 🍂 🌿 🍄🍝 🍛 🍤 📃个人主页 :阿然成长日记 …

在pycharm中导入sklearn库失败到成功

运行下列代码: pip install -i https://pypi.tuna.tsinghua.edu.cn/simple scikit-learn 可以发现下载库时,不是直接下载sklearn库,而是下载scikit-learn库 之前下载一直失败,终于找到原因了。果然还是得多尝试,还…

【已解决简单好用】notepad++怎么设置中文

打开Notepad软件。点击软件界面顶部菜单栏中的“Settings”选项。在下拉菜单中选择“Preferences”进行语言设置。在打开的设置窗口中,找到“General”选项。在“General”选项中,找到“Localization”(界面语言)项。在下拉菜单中…

Spring-IOC之组件扫描

版本 Spring Framework 6.0.9​ 1. 前言 通过自动扫描,Spring 会自动从扫描指定的包及其子包下的所有类,并根据类上的特定注解将该类装配到容器中,而无需在 XML 配置文件或 Java 配置类中逐一声明每一个 Bean。 支持的注解 Spring 支持一系…

IDEA最好用插件推荐

1 背景 俗话说:“工欲善其事必先利其器”,本问介绍几款强大实用的 IDEA 插件,助力大家开发。 希望大家做一个聪明又努力的人,而不只是一个努力的人。 以下插件大都可以通过 IDEA 自带的插件管理中心安装,如果搜不到可以…

如何给word中的拼音加声调?分享3个方法

一,前言 在Word文档中标注拼音声调,是许多人在处理中文文档时经常需要面对的问题。对于不熟悉拼音的人来说,这可能会是一个挑战。但是,通过掌握一些简单的步骤和技巧,我们可以轻松地在Word文档中标注拼音声调。 二&a…

车载以太网DoIP 协议,万字长文详解

🍅 我是蚂蚁小兵,专注于车载诊断领域,尤其擅长于对CANoe工具的使用🍅 寻找组织 ,答疑解惑,摸鱼聊天,博客源码,点击加入👉【相亲相爱一家人】🍅 玩转CANoe&…

YOLOv8 实现车牌检测,生成可视化检测视频(20240424)

原项目源码地址:GitHub 我的源码地址:Gitee 环境搭建请参考:Win10 搭建 YOLOv8 运行环境(20240423)-CSDN博客 环境测试请参考:本地运行测试 YOLOv8(20240423)-CSDN博客 训练数据…

三、CPU基础-缓存

计算机中缓存一般分为两个部分 1.内存 2.CPU Cache 一、CPU Cache分级 CPU Cache 通常分为大小不等的三级缓存,分别是 L1 Cache、L2 Cache 和 L3 Cache。 L1 Cache 和 L2 Cache 都是每个 CPU 核心独有的(通常会分为「数据缓存」和「指令缓存」&#…

百度安全多篇议题入选Blackhat Asia以硬技术发现“芯”问题

Blackhat Asia 2024于4月中旬在新加坡隆重举行。此次大会聚集了业界最杰出的信息安全专业人士和研究者,为参会人员提供了安全领域最新的研究成果和发展趋势。在本次大会上,百度安全共有三篇技术议题被大会收录,主要围绕自动驾驶控制器安全、跨…

告别互信息:跨模态人员重新识别的变分蒸馏

Farewell to Mutual Information: Variational Distillation for Cross-Modal Person Re-Identification 摘要: 信息瓶颈 (IB) 通过在最小化冗余的同时保留与预测标签相关的所有信息,为表示学习提供了信息论原理。尽管 IB 原理已应用于广泛的应用&…

使用CSS+HTML完成导航栏

HTML <!DOCTYPE html> <html lang"en"> <head> <meta charset"UTF-8"> <meta name"viewport" content"widthdevice-width, initial-scale1.0"> <title>导航栏示例</title> &l…

​LeetCode解法汇总2385. 感染二叉树需要的总时间

目录链接&#xff1a; 力扣编程题-解法汇总_分享记录-CSDN博客 GitHub同步刷题项目&#xff1a; https://github.com/September26/java-algorithms 原题链接&#xff1a;. - 力扣&#xff08;LeetCode&#xff09; 描述&#xff1a; 给你一棵二叉树的根节点 root &#xff0…

QT——其他方式实现HelloWrold

QT——其他方式实现HelloWrold 使用输入框实现使用代码实现 通过按钮实现信号槽代码方式实现 我们之前对QT实现HelloWorld有了一些基本的了解&#xff0c;用了一些简单的方法实现了HelloWorld&#xff0c;如果对QT还不怎么了解的&#xff0c;可以点击这里&#xff1a; https://…

YOLOv9改进策略 | 添加注意力篇 | TripletAttention三重注意力机制(附代码+机制原理+添加教程)

一、本文介绍 本文给大家带来的改进是Triplet Attention三重注意力机制。这个机制&#xff0c;它通过三个不同的视角来分析输入的数据&#xff0c;就好比三个人从不同的角度来观察同一幅画&#xff0c;然后共同决定哪些部分最值得注意。三重注意力机制的主要思想是在网络中引入…

【调制】π/4-DQPSK信号模型及其相关特性分析 【附MATLAB代码】

MATLAB代码 % pi/4-DQPSK modulation %输入一串数&#xff0c;输出经过差分并映射的I、Q两路数据 ​ function [I,Q]pi4_dqpskmod(data) ​ nlength(data)./2; data1data.*2-1; ​ Idatazeros(1,n); Qdatazeros(1,n); ​ ​ Idatadata1(1,1:2:2*n); %串并变换 Qdatadata1(…

MT3030 天梯赛

跟MT3029战神小码哥类似&#xff0c;都是贪心堆。注意开long long 这里的堆顶为战斗力最小的&#xff0c;便于贪心的反悔操作。先按容忍度从大到小排序&#xff08;q中总容忍度取决于最小的容忍度&#xff09;&#xff0c;再向q中存数&#xff0c;存到不能容忍之后再把堆顶踢出…

网优干货:ACP交付详解版(1)

1.1. 整体流程简介 使用Massive MIMO ACP工具进行覆盖优化的整体流程如下&#xff1a; 1.2. 数据准备 在使用基于DT数据进行5G MassiveMIMO覆盖优化前&#xff0c;需要从网络中收集以下各类数据&#xff0c;数据采集范围需包括优化区域以及对其存在干扰的周边区域所有5G站点。 …

【Java】文件操作(一)

文章目录 ✍一、文件的基本认识1.文件是什么&#xff1f;2.文本文件和二进制文件3.文件权限4.相对路径和绝对路径1.1绝对路径1.2相对路径 ✍二、文件的基本操作1.FIle的属性2.File的构造方法3.File类的方法3.1File类的获取操作3.2File类的判断操作3.3文件创建和删除3.4其他的常…

UltraScale+的10G/25G Ethernet Subsystem IP核使用

文章目录 前言一、设计框图1.1、xxv_ethernet_01.2、xxv_ethernet_0_sharedlogic_wrapper1.3、xxv_ethernet_0_clocking_wrapper1.4、xxv_ethernet_0_common_wrapper 二、IP核配置三、仿真四、上板测速五、总结 前言 前面我们学习了很多基于XILINX 7系列的高速接口使用&#x…