一个联合均值与方差模型的R包——dglm

news2025/1/23 6:14:53

目录

  • 一、引言
  • 二、包的安装与载入
  • 三、模拟例子
    • 3.1 数据生成
    • 3.2 数据查看
    • 3.3 模型估计参数

一、引言

在 R 语言中,dglm 包是用于拟合双参数广义线性模型(Double Generalized Linear Models,简称 DGLMs)的一个工具。这类模型允许同时对均值和方差进行建模,使其适用于处理具有复杂异方差性(方差随均值变化)的数据。dglm 包提供了一个强大的框架,能够扩展传统的广义线性模型(GLM)以包含额外的分布族(双指数族分布,Double Exponential Families and Their Use in Generalized Linear Regression)和链接函数。
特点和应用

  • 1.双参数建模:
    dglm 允许用户对响应变量的均值和方差同时进行建模。这一点在数据的条件方差不仅仅是一个常数,而是依赖于其他预测变量时尤为有用。
  • 2.支持多种分布:
    包括正态分布、泊松分布、二项分布等,适用于多种类型的数据,如计数数据、比例数据和连续数据等。
    下面我们看一下dglm包如何应用在在联合均值与方差模型中。请添加图片描述

二、包的安装与载入

要使用 dglm 包,你首先需要安装并加载它:

install.packages("dglm")
library(dglm)

下面,我将提供一个实例,演示如何在正态分布假设下使用 dglm 包拟和联合均值和方差模型。这个例子将使用模拟数据,包括响应变量和两个预测变量,来模拟和解释使用过程。
下面的代码生成了响应变量 y,其均值由 x 控制,方差由另一个预测变量 z 控制。

# 安装并加载 dglm 包
if (!requireNamespace("dglm", quietly = TRUE)) {
  install.packages("dglm")
}
library(dglm)

三、模拟例子

3.1 数据生成

> n <- 100
> p <- 3
> q <- 2
> x <- mvrnorm(n, rep(0, p), diag(rep(1, p)))
> z <- mvrnorm(n, rep(0, q), diag(rep(1, q)))
> Gamma <- rep(1.5, q)
> Beta <- rep(1, p)
> mu <- x %*% Beta
> Sigma <- exp(z %*% Gamma/2)
> y <- rnorm(n, mu, Sigma)

3.2 数据查看

> head(x)
           [,1]       [,2]        [,3]
[1,] -1.5780228  0.1444049  0.15079946
[2,] -1.0993938 -0.9157112 -1.21989781
[3,]  0.1035927 -0.3182703  0.51195826
[4,]  0.6475000 -0.1438263 -0.05216163
[5,] -1.0140735 -2.0892163  1.61120512
[6,] -0.4940874 -1.3556227 -2.64037345
> head(z)
           [,1]       [,2]
[1,]  0.1909625 -0.1555610
[2,] -0.2352016  0.9540309
[3,]  0.3996848 -0.3775460
[4,] -0.5754440 -1.5776652
[5,] -1.0378053  1.4773011
[6,]  0.7999732 -0.5783404
> y
  [1]  -1.92185290  -3.71610774   0.23600523   0.27829763   0.79283025
  [6]  -5.83528438   0.75269962  -3.76054139   0.37209131   0.07701730
 [11] -66.38751900   0.08314009   3.28642313 -18.61084616  -2.27184040
 [16]   3.54371296   0.72487268   1.16189009   0.43802927  -4.12017498
 [21]   0.20035594  -0.36651361  -0.75994819  -2.40996426   5.30439360
 [26]  -1.94929237  -1.88685464   1.45781179  -1.17480558  -3.60967067
 [31]  -0.20518913   2.17653752   0.67298245   1.40897920  -0.27651236
 [36]   2.78962790   1.35344365   2.05874102   3.39256784   3.88268947
 [41]  -1.43774535   3.04341943   1.72229299  -0.69458754  -1.59774648
 [46]  -0.11029906  -1.45056626  -2.92491189   0.63004032   1.12543422
 [51]  -0.54342984  -3.19563353   1.23198020   4.19498285  -1.28794485
 [56]   2.74771232   0.30330905  -6.92552297   2.60450584  -2.01859611
 [61]   1.31243200  -0.21181456   0.92944241  -7.21390674  -1.12815181
 [66]  -2.97505852   1.97950406   3.54217820  -0.30837683   1.39522639
 [71]  -3.40358016  -3.52643718  -0.21030846  -5.22556674   1.80455873
 [76]   2.06546172  -2.32681780  -1.51592768   0.39253337  -1.37245595
 [81]  -0.94119131   3.18593841  -5.09087215  -2.48969425   1.25068697
 [86]  -2.26388861  -0.44683619  -3.54009303   1.04009345   1.53777774
 [91]  -0.62336357   0.54738385   1.24649775  -1.28324039   1.35267779
 [96]  -3.84572044  -0.43770251   1.39880786   1.93571598   2.75400275
> 

3.3 模型估计参数

> library(dglm)
> fit <- dglm(y ~ x[,1] + x[,2] + x[,3] - 1, ~ z[,1] + z[,2] - 1)
> summary(fit)

Call: dglm(formula = y ~ x[, 1] + x[, 2] + x[, 3] - 1, dformula = ~z[, 
    1] + z[, 2] - 1)

Mean Coefficients:
        Estimate Std. Error  t value     Pr(>|t|)
x[, 1] 0.8862072 0.04097214 21.62950 6.881106e-39
x[, 2] 0.8776343 0.03659551 23.98202 1.469803e-42
x[, 3] 1.0764954 0.03109393 34.62076 2.126243e-56
(Dispersion Parameters for gaussian family estimated as below )

    Scaled Null Deviance: 2316.859 on 100 degrees of freedom
Scaled Residual Deviance: 76.88849 on 97 degrees of freedom

Dispersion Coefficients:
       Estimate Std. Error  z value     Pr(>|z|)
z[, 1] 1.761483  0.1413521 12.46167 1.208121e-35
z[, 2] 1.618310  0.1492953 10.83966 2.233068e-27
(Dispersion parameter for Gamma family taken to be 2 )

    Scaled Null Deviance: 522.7625 on 100 degrees of freedom
Scaled Residual Deviance: 125.1396 on 98 degrees of freedom

Minus Twice the Log-Likelihood: 270.2212 
Number of Alternating Iterations: 9 

其中:输出的 summary(fit) 会提供:

  • 均值模型的参数估计、标准误、z 值和 p 值。
  • 方差模型的参数估计、标准误、z 值和 p 值。
    使用估计参数进行预测,获取了 β 和 γ 的估计后,你还可以使用这些参数进行预测或进一步的分析。例如,预测新数据点的响应值:
    new_data <- data.frame(x = mvrnorm(n, rep(0, p), diag(rep(1, p)))
    , z = mvrnorm(n, rep(0, q), diag(rep(1, q))))

predicted_values <- predict(fit, newdata = new_data, type = “response”)
print(predicted_values)
这里,predict() 函数使用拟合后的模型和新数据进行预测,type = “response” 表示预测的是响应变量的值。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1620147.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

fakak详解(2)

Kafka和Flume整合 Kafka与flume整合流程 Kafka整合flume流程图 flume主要是做日志数据(离线或实时)地采集。 图-21 数据处理 图-21显示的是flume采集完毕数据之后&#xff0c;进行的离线处理和实时处理两条业务线&#xff0c;现在再来学习flume和kafka的整合处理。 配置fl…

centos7使用源码安装方式redis

安装编译源码的工具gcc yum install -y gcc下载源码 源码下载地址 https://download.redis.io/releases/ 注意事项 不建议安装最新版本redis&#xff0c;所以我这里选择6.2.6版本 下载 wget https://download.redis.io/releases/redis-6.2.6.tar.gz解压 tar -zxvf redis-…

基于表面法线法的二维人脸图构建三维人脸模型matlab仿真

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 matlab2022a 3.部分核心程序 ............................................................................for j 1 : …

Python基础进阶语法

目录&#xff1a; 一、基础语法二、进阶语法 一、基础语法 二、进阶语法 1、列表推导式运用 解析&#xff1a;先循环1到10内的数字&#xff0c;然后过滤大于5的数&#xff0c;赋值到new_list数组中进行打印结果。

数字信号处理操作教程_音频解码:3-8 G711A音频解码实验

一、实验目的 学习G711音频的格式和G711A音频解码的原理&#xff0c;并实现将BIT格式解码为PCM格式。 二、实验原理 G711 G711是国际电信联盟订定出来的一套语音压缩标准&#xff0c;主要用于电话。它主要用脉冲编码调制对音频采样&#xff0c;采样率为8k每秒。它利用一个 …

VUE2版本的仿微信通讯录侧滑列表

<template><!-- Vue模板部分 --><div><div v-for"(group, index) in groupedArray" :key"index" ref"indexcatch"><h2>{{ letter[index] }}</h2><ul><li v-for"item in group" :key&quo…

什么因素可以影响到代理IP稳定性?爬虫代理IP有哪些作用?

一、什么因素可以影响到代理IP稳定性 代理IP的稳定性受到多种因素的影响&#xff0c;以下是一些主要的因素&#xff1a; 代理IP的质量&#xff1a;不同的代理IP提供商提供的代理IP质量参差不齐&#xff0c;一些低质量的代理IP可能经常出现连接问题或速度慢的情况&#xff0c;…

Day:动态规划 LeedCode 123.买卖股票的最佳时机III 188.买卖股票的最佳时机IV

123. 买卖股票的最佳时机 III 给定一个数组&#xff0c;它的第 i 个元素是一支给定的股票在第 i 天的价格。 设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔 交易。 注意&#xff1a;你不能同时参与多笔交易&#xff08;你必须在再次购买前出售掉之前的股票&a…

解码数据世界:统计学入门与应用指南

引言 统计学可以被定义为研究数据的科学&#xff0c;它涉及到数据的收集、分析、解释和呈现。其目标是从数据中提取有意义的信息&#xff0c;并使用这些信息来做出推断与决策。 统计学主要分别以下几个主要领域&#xff1a; 描述性统计&#xff1a;使用图表、图形和其他工具…

C++之入门

文章目录 1、前言2、C的关键字2.1C语言32关键字2.2C关键字(63个) 3、命名空间4、输入输出(cout、cin)4、缺省参数5、函数重载6 引用6.1 引用的定义6.2 引用的特性6.3引用的使用场景6.4 实际例子6.5、总结 7、内联函数8、auto关键字9、nullptr关键字 1、前言 C语言是结构化和模…

【声呐仿真】学习记录0-服务器配置docker、ros环境

【声呐仿真】学习记录0-服务器配置docker、ros环境 前言一、~~0.设置mobaXterm~~1.拉取镜像2.服务器开启xhost&#xff0c;可视化&#xff08;rviz、gazebo&#xff09;3.创建容器&#xff0c;挂载数据卷4.测试宿主机与容器数据是否同步5.测试5.0测试xclock5.1测试ros小乌龟5.2…

算术表达式计算程序:Python语言实现

算术表达式计算程序&#xff1a;Python语言实现 本文介绍通过Python语言实现算术表达式计算程序的过程。 我们将按照软件工程的基本步骤来介绍&#xff1a; 需求分析设计实现 程序的需求 我们的程序具有如下功能&#xff1a; 用户在提示符下输入一个算术表达式&#xff0…

碰到今日伦敦银价格走势图不懂得分析怎么办?

踏入2024年&#xff0c;伦敦银出现了比往年更多的投资机会&#xff0c;尤其是近期伦敦银价格连续上涨突破多个整数关口&#xff0c;现在已经站在28上方。碰到这么强的走势&#xff0c;投资者自然很想快点入场交易。但是交易前投资者需要分析今日伦敦银价格走势图之后再入场&…

ffmpeg支持MP3编码的方法

目录 现象 解决办法 如果有编译包没有链接上的情况 现象 解决办法 在ffmpeg安装包目录下 &#xff0c;通过./configure --list-encoders 和 ./configure --list-decoders 命令可以看到&#xff0c;ffmpeg只支持mp3解码&#xff0c;但是不支持mp3编码。 上网查寻后发现&…

idm序列号永久激活码2023免费可用 IDM软件破解版下载 最新版Internet Download Manager 网络下载加速必备神器 IDM设置中文

IDM是一款多线程下载工具&#xff0c;全称Internet Download Manager。IDM的多线程加速功能&#xff0c;能够充分利用宽带&#xff0c;所以下载速度会比较快&#xff0c;而且它支持断点续传。它的网站音视频捕获、站点抓取、静默下载等功能&#xff0c;也特别实用。 idm使用技…

SS34B-ASEMI超低Low VF肖特基SS34B

编辑&#xff1a;ll SS34B-ASEMI超低Low VF肖特基SS34B 型号&#xff1a;SS34B 品牌&#xff1a;ASEMI 封装&#xff1a;SMB 最大平均正向电流&#xff08;IF&#xff09;&#xff1a;3A 最大循环峰值反向电压&#xff08;VRRM&#xff09;&#xff1a;40V 最大正向电压…

hyperf 三十一 极简DB组件

一 安装及配置 composer require hyperf/db php bin/hyperf.php vendor:publish hyperf/db 默认配置 config/autoload/db.php 如下&#xff0c;数据库支持多库配置&#xff0c;默认为 default。 配置项类型默认值备注driverstring无数据库引擎 支持 pdo 和 mysqlhoststringl…

线程安全以及解决方案

文章目录 1.线程安全的原因①抢占式执行②多线程修改同一个变量③修改的操作不是原子的④内存可见性⑤指令重排序 2. 线程安全的解决方案3 synchronized的特性------可重入锁 1.线程安全的原因 ①抢占式执行 操作系统对线程的调度是随机的&#xff0c;没有规律&#xff08;主…

什么便签好用又没广告 好用无广便签分享

身处这个快节奏的时代&#xff0c;我们时常被各种琐事和计划所包围。想象一下&#xff0c;你在办公桌前&#xff0c;电脑屏幕上杂乱无章地贴着各种纸质便签&#xff0c;有的记录着待办事项&#xff0c;有的则是灵感闪现时的几句诗句。每次想要查找某个信息&#xff0c;都得费力…

Golang | Leetcode Golang题解之第42题接雨水

题目&#xff1a; 题解: func trap(height []int) (ans int) {n : len(height)if n 0 {return}leftMax : make([]int, n)leftMax[0] height[0]for i : 1; i < n; i {leftMax[i] max(leftMax[i-1], height[i])}rightMax : make([]int, n)rightMax[n-1] height[n-1]for i…