代码随想录算法训练营DAY32|C++贪心算法Part.2|122.买卖股票的最佳时机II、55.跳跃游戏、45.跳跃游戏II

news2025/1/11 5:57:55

文章目录

  • 122.买卖股票的最佳时机II
    • 思路
    • CPP代码
  • 55.跳跃游戏
    • 思路
    • CPP代码
  • 45.跳跃游戏II
    • 思路
      • 方法一
      • 代码改善
    • CPP代码

122.买卖股票的最佳时机II

力扣题目链接

文章讲解:122.买卖股票的最佳时机II

视频讲解:

状态:本题可以用动态规划,但是贪心也是能做出来的

本题中首先要明确两个:

  • 只有一只股票;
  • 当前只有买股票或者卖股票的操作

想要获得利润至少要两天为一个交易单元

思路

本题最难受的就是低点和高点不太好找, 但是,如果我们从贪心的角度来思考一个局部问题。

如果我们根据当前的股票价格数组,把利润分解为每天为单位的维度。这样我们就可以得到每天的利润序列:

在这里插入图片描述

现在我们可以得出我们的

局部最优:收集每天的正利润

result += max(prices[i] - prices[i - 1], 0);

全局最优:求得最大利润

CPP代码

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int result = 0;
        for (int i = 1; i < prices.size(); i++) {
            result += max(prices[i] - prices[i - 1], 0);
        }
        return result;
    }
};

55.跳跃游戏

力扣题目链接

文章链接:55.跳跃游戏

视频链接:贪心算法,怎么跳跃不重要,关键在覆盖范围 | LeetCode:55.跳跃游戏

状态:感觉贪心算法的题都好有意思,但是这题挺难想,局部整成啥呢?

思路

脑经急转弯:只要每次得到最大的可跳范围就行。根本就不需要我们是跳一步两步还是三步。

那么这个问题就转化为跳跃覆盖范围究竟可不可以覆盖到终点!

每次移动取最大跳跃步数(得到最大的覆盖范围),每移动一个单位,就更新最大覆盖范围

贪心算法局部最优解:每次取最大跳跃步数(取最大覆盖范围)

整体最优解:最后得到整体最大覆盖范围,看是否能到终点

从上文可以看出,我们要比较当前范围下能扩充的最终范围。

CPP代码

class Solution {
public:
    bool canJump(vector<int>& nums) {
        int cover = 0;
        if (nums.size() == 1) return true; // 只有一个元素,就是能达到
        for (int i = 0; i <= cover; i++) { // 注意这里是小于等于cover
            cover = max(i + nums[i], cover);
            if (cover >= nums.size() - 1) return true; // 说明可以覆盖到终点了
        }
        return false;
    }
};

45.跳跃游戏II

力扣题目链接

文章链接:45.跳跃游戏II

视频链接:贪心算法,最少跳几步还得看覆盖范围 | LeetCode: 45.跳跃游戏 II

状态:

思路

在[55.跳跃游戏](# 55.跳跃游戏)中,重点在于能够跳到终点;

在本题中,重点在于最少多少步跳到终点。

但是一个基本思路还是类似的,就是关于覆盖范围的概念。我们每一步都应该是尽可能得去增加我们的覆盖范围。

所以本题可以这样理解:我们用最少的步数去增加我们的覆盖范围

本题的贪心思路如下:

局部最优:当前可移动距离尽可能多走,如果还没到终点,步数再加1

整体最优:一步尽可能多走,从而达到最少步数

下列图中覆盖范围的意义就在于,只要是红色的区域,最多两步一定可以到

方法一

首先要明确的如果数组长度只有1,那么直接返回0;

if (nums.size() == 1) return 0;

其次,明确当前覆盖最远范围的下标和下一步覆盖最远范围的下标;

int curDistance = 0, ans = 0, nexDistance = 0;

我们开始遍历数组,并且要开始收集下一步能跳多远,并且更新步数。

for (i = 0; i < nums.zie(); i++){
  //nextDistance =  i + nums[i]; 下一步能跳多远,但是我们应该记录下一步里跳得最远的
  nexDistance = max(nexDistance, i + nums[i]);
  if (i == curDistance){//遇到当前覆盖最远距离的下标
    ans++; //走一步
    curDistance = nextDistance//更新当前最远距离下标
    if (nextDistance >= nums.size() - 1) break;
  } 
}
return ans;

最关键的就是搞清楚什么时候步数+1。

  • 如果当前覆盖最远距离下标不是是集合终点,步数就加一,还需要继续走。
  • 如果当前覆盖最远距离下标就是是集合终点,步数不用加一,因为不能再往后走了。

个人觉得思路很结点,带式代码还是很绕的。

代码改善

这里也是一种思路的改善,就是我们不再关注当前覆盖最远距离的下标是不是终点。

让移动下标指向nums.size - 2

  • 如果移动下标等于当前覆盖最大距离下标, 需要再走一步(即 ans++),因为最后一步一定是可以到的终点。(题目假设总是可以到达数组的最后一个位置),如图:
  • 如果移动下标不等于当前覆盖最大距离下标,说明当前覆盖最远距离就可以直接达到终点了,不需要再走一步。

CPP代码

//方法一
class Solution {
public:
    int jump(vector<int>& nums) {
        if (nums.size() == 1) return 0;
        int curDistance = 0;    // 当前覆盖最远距离下标
        int ans = 0;            // 记录走的最大步数
        int nextDistance = 0;   // 下一步覆盖最远距离下标
        for (int i = 0; i < nums.size(); i++) {
            nextDistance = max(nums[i] + i, nextDistance);  // 更新下一步覆盖最远距离下标
            if (i == curDistance) {                         // 遇到当前覆盖最远距离下标
                ans++;                                  // 需要走下一步
                curDistance = nextDistance;             // 更新当前覆盖最远距离下标(相当于加油了)
                if (nextDistance >= nums.size() - 1) break;  // 当前覆盖最远距到达集合终点,不用做ans++操作了,直接结束
            }
        }
        return ans;
    }
};
//方法二
class Solution {
public:
    int jump(vector<int>& nums) {
        int curDistance = 0;    // 当前覆盖的最远距离下标
        int ans = 0;            // 记录走的最大步数
        int nextDistance = 0;   // 下一步覆盖的最远距离下标
        for (int i = 0; i < nums.size() - 1; i++) { // 注意这里是小于nums.size() - 1,这是关键所在
            nextDistance = max(nums[i] + i, nextDistance); // 更新下一步覆盖的最远距离下标
            if (i == curDistance) {                 // 遇到当前覆盖的最远距离下标
                curDistance = nextDistance;         // 更新当前覆盖的最远距离下标
                ans++;
            }
        }
        return ans;
    }
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1618977.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

模块三:二分——69.x的平方根

文章目录 题目描述算法原理解法一&#xff1a;暴力查找解法二&#xff1a;二分查找 代码实现暴力查找CJava 题目描述 题目链接&#xff1a;69.x的平方根 算法原理 解法一&#xff1a;暴力查找 依次枚举 [0, x] 之间的所有数 i &#xff08;这⾥没有必要研究是否枚举到 x /…

消消乐算法总结

前言 最近在工作中遇到一个问题&#xff0c;做一个消消乐的demo项目&#xff0c;连续相同数目超过四个后就要消除。我在网上看了很多解决方案&#xff0c;有十字形&#xff0c;横向&#xff0c;纵向&#xff0c;梯形搜索。越看越迷糊。这不是用一个BFS就能解决的问题吗&#x…

用于割草机器人,商用服务型机器人的陀螺仪

介绍一款EPSON推出适用于割草机器人&#xff0c;商用服务型机器人的高精度陀螺仪模组GGPM61&#xff0c;具体型号为GGPM61-C01。模组GGPM61是一款基于QMEMS传感器的低成本航向角输出的传感器模组&#xff0c;它可以输出加速度、角速度及姿态角等信息&#xff0c;为控制机器人运…

界面组件DevExpress Blazor UI v23.2 - 支持.NET 8、全新的项目模版

DevExpress Blazor UI组件使用了C#为Blazor Server和Blazor WebAssembly创建高影响力的用户体验&#xff0c;这个UI自建库提供了一套全面的原生Blazor UI组件&#xff08;包括Pivot Grid、调度程序、图表、数据编辑器和报表等&#xff09;。 DevExpress Blazor控件目前已经升级…

创建钉钉审批流实例

1、依赖 <!--钉钉 api --> <dependency><groupId>com.aliyun</groupId><artifactId>dingtalk</artifactId><version>2.0.14</version> </dependency> <!--钉钉 事件订阅--> <dependency><groupId>co…

智慧安防视频监控EasyCVR视频汇聚平台无法自动播放视频的原因排查与解决

国标GB28181协议EasyCVR安防视频监控平台可以提供实时远程视频监控、视频录像、录像回放与存储、告警、语音对讲、云台控制、平台级联、磁盘阵列存储、视频集中存储、云存储等丰富的视频能力&#xff0c;平台支持7*24小时实时高清视频监控&#xff0c;能同时播放多路监控视频流…

【Flask】Flask中HTTP请求与接收

一、接收http请求与返回响应 在Flask中&#xff0c;可以通过app.route装饰器来定义路由函数。 app.route(/BringGoods,methods [POST, GET]) GET请求&#xff1a;使用request.args.get(key)或者request.values.get(key)来获取URL中的参数。 POST请求&#xff1a; 使用req…

设计模式学习笔记 - 开源实战四(中):剖析Spring框架中用来支持扩展的设计模式

概述 上篇文章&#xff0c;学习了 Spring 框架背后蕴含的设计思想&#xff0c;比如约定优于配置、低侵入松耦合、模块化轻量级等等。这些设计思想可以借鉴到其他框架开发中&#xff0c;在大的设计层面提高框架的代码质量。 除了上篇文章降到的设计思想&#xff0c;实际上&…

【牛客 NC253455】小红走排列 题解(双端队列+位集合+贪心算法)

题目描述 对于一个排列&#xff0c;小红定义该排列的总消耗为&#xff1a;1走到2&#xff0c;2走到3&#xff0c;……&#xff0c;最终从 n − 1 n-1 n−1走到 n n n所需的最少的总步数。其中&#xff0c;每一步可以向左走一步&#xff0c;也可以向右走一步。 现在&#xff0…

薄板样条插值TPS原理以及torch和opencv实现

薄板样条插值TPS原理以及torch和opencv实现 1、薄板样条插值TPS原理概述原理以及公式推导2、torch实现3、opencv实现1、薄板样条插值TPS原理 概述 薄板样条(Thin Plate Spline),简称TPS,是一种插值方法,可找到通过所有给定点的“最小弯曲”光滑曲面。因为它一般都是基于…

ESP-IDF下载与安装完整流程

本文主要看参考官网说明&#xff0c;如下&#xff1a; Windows 平台工具链的标准设置 - ESP32 - — ESP-IDF 编程指南 latest 文档 (espressif.com) 一、概述 ESP-IDF需要安装一些必备工具&#xff0c;才能围绕ESP32构建固件&#xff0c;包括&#xff1a; PythonGit交叉编译…

DeepFaceLab小白教程:视频换脸过程

合适那些人阅读&#xff1f; 适合从未使用过DeepFaceLab的群体。 如果你想基于DeepFaceLab完成一次视频换脸的操作&#xff0c;可以看本篇。 下载方式 GitHub https://github.com/iperov/DeepFaceLab 我是用motrix下载。 网盘 https://pan.baidu.com/share/init?surlO4…

蓝桥杯:日期问题(我的绝望题)

&#x1f381;个人主页&#xff1a;我们的五年 &#x1f50d;系列专栏&#xff1a;每日一练 &#x1f337;追光的人&#xff0c;终会万丈光芒 目录 前言&#xff1a; &#x1f337;1.问题描述&#xff1a; 1.问题描述&#xff1a; 2.输入格式&#xff1a; 3.输出格式&#…

华为海思校园招聘-芯片-数字 IC 方向 题目分享——第七套

华为海思校园招聘-芯片-数字 IC 方向 题目分享——第七套 (共9套&#xff0c;有答案和解析&#xff0c;答案非官方&#xff0c;未仔细校正&#xff0c;仅供参考&#xff09; 部分题目分享&#xff0c;完整版获取&#xff08;WX:didadidadidida313&#xff0c;加我备注&#x…

Golang基础1

基本类型 bool 整数&#xff1a;byte(相当于uint8), rune(相当于int32), int/uint ,int8/uint8 ,int16/uint16 ,int32/uint32 ,int64/uint64 浮点数: float32 ,float64, complex64 ,complex128 array&#xff08;值类型&#xff09;、slice、map、chan&#xff08;引用类型…

小扎宣布开放 Meta Horizo​​n OS

日前&#xff0c;Meta以“混合现实的新时代”为题的博文宣布向第三方制造商开放Meta Horizon OS&#xff0c;包括华硕、联想和微软Xbox等等&#xff1a; Meta正在朝着为元宇宙建立一个更开放的计算平台的愿景迈出下一步。Meta正在向第三方硬件制造商开放赋能Meta Quest设备的操…

ETL简介以及使用ETL(Kettle)进行数据接入的具体例子

目录 ETL介绍 ETL简介 ETL包含的三部分 ETL基本概念 ETL资源库 ETL变量 业务表梳理以及接入规划 数据接入流程 业务表梳理 ETL任务规范 接入规划 数据接入中的方便工具 具体例子 导出生产表信息 1、ORACLE 2、MYSQL ETL数据增量抽取任务开发 1、ORACLE通用流程…

使用 IPAM 解决方案简化分布式网络管理

随着组织在数字领域的全球扩张&#xff0c;分布式网络是不可避免的&#xff0c;这意味着&#xff0c;随着 IT 基础设施的发展&#xff0c;组织需要适应&#xff0c;这包括在不断增长的系统需求、应用程序堆栈、各种协议和安全防御中监控、现代化和简化流程和资源。在有效管理现…

场景 - 分库分表

分什么 数据量大分表&#xff0c;并发大分库 分表字段如何选择 如果对交易订单进行分表&#xff0c;可以选择的东西很多&#xff0c;比如说商户id&#xff0c;用户id&#xff0c;地区等等 分表的时候要考虑到数据倾斜问题 数据倾斜 比如说按商户号进行分表&#xff0c;一共…

React-editor-js not showing up in a function component

React-editor-js not showing up in a function component react-editor-js 在react 函数组件中显示不出来 真的&#xff0c;我马上就想放弃它了。但是看它周下载量还挺多&#xff0c;我不信别人没遇到过。于是我继续在网络上挖呀挖。只是我一开始的方向错了。我一直以为我的写…