Spark-机器学习(4)回归学习之逻辑回归

news2024/12/23 17:33:23

在之前的文章中,我们来学习我们回归中的线性回归,了解了它的算法,知道了它的用法,并带来了简单案例。想了解的朋友可以查看这篇文章。同时,希望我的文章能帮助到你,如果觉得我的文章写的不错,请留下你宝贵的点赞,谢谢。

Spark-机器学习(3)回归学习之线性回归-CSDN博客文章浏览阅读1.4k次,点赞39次,收藏28次。今天的文章,我们来学习我们回归中的线性回归,希望大家能有所收获。同时,希望我的文章能帮助到每一个正在学习的你们。也欢迎大家来我的文章下交流讨论,共同进步。https://blog.csdn.net/qq_49513817/article/details/138014891今天的文章,我们来学习我们回归中的逻辑回归,并带来简单案例,学习用法。希望大家能有所收获。

目录

一、逻辑回归

 什么是逻辑回归? 

spark线性回归

二、示例代码

拓展-逻辑回归算法介绍及用法

一、逻辑回归

 什么是逻辑回归? 

逻辑回归sigmoid函数

逻辑回归(Logistic Regression)是一种广义的线性回归分析模型,它主要用于解决二分类(0或1)问题,也可以用于多分类问题。逻辑回归的名称中虽然有“回归”二字,但它实际上是一种分类方法,主要用于研究某些事件发生的概率。

逻辑回归通过sigmoid函数将线性回归模型的输出映射到(0,1)之间,从而得到某个事件发生的概率。sigmoid函数的形式为:

g(z) = 1 / (1 + e^(-z))

其中,z是线性回归模型的输出。通过sigmoid函数,我们可以将线性回归模型的输出转化为一个概率值,从而进行二分类或多分类。

逻辑回归的优点包括计算代价不高,易于理解和实现。然而,它也有一些缺点,例如对数据和场景的适应能力有局限性,有时候不如决策树算法准确率高。另外,逻辑回归假设数据服从伯努利分布,因此不适合处理具有多个离散值的问题。

逻辑回归是一种常用的分类算法,尤其适用于二分类问题。在实际应用中,我们需要根据具体的问题和数据特点来选择合适的算法。

spark线性回归

Spark线性回归是利用Spark平台实现的一种线性回归分析方法。线性回归是一种回归分析,它使用称为线性回归方程的最小平方函数来对一个或多个自变量和因变量之间的关系进行建模。这种函数是回归系数的线性组合,其中回归系数是模型的参数。在Spark中,线性回归可以通过其机器学习库MLlib来实现,该库提供了用于数据分析和机器学习的各种算法和工具。通过Spark线性回归,用户可以处理大规模的数据集,并利用分布式计算的能力来加速模型的训练和预测过程。Spark线性回归在数据科学、机器学习、统计分析等领域有广泛的应用。 

二、示例代码

import org.apache.spark.ml.classification.LogisticRegression
import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator
import org.apache.spark.sql.SparkSession
object p4 {
  def main(args: Array[String]): Unit = {
    // 创建SparkSession
    val spark = SparkSession
      .builder()
      .appName("LogisticRegression")
      .master("local")
      .getOrCreate()
    import spark.implicits._
    // 加载CSV文件
    val data = spark.read.option("header", "true").csv("C:\\IDEA\\P1\\p1\\data01.csv")
      // 假设features列只包含一个double类型的值,直接转换即可
      .withColumn("features", $"features".cast("double"))
    // 选择包含label和features的列
    val finalData = data.select("label", "features")
    // 划分训练集和测试集
    val Array(trainingData, testData) = finalData.randomSplit(Array(0.7, 0.3))
    // 创建逻辑回归模型
    val lr = new LogisticRegression()
      .setMaxIter(10)
      .setRegParam(0.3)
    // 训练模型
    val lrModel = lr.fit(trainingData)
    // 在测试集上进行预测
    val predictions = lrModel.transform(testData)
    // 选择 (prediction, true label) 并展示结果
    predictions.select("prediction", "label").show(10)
    // 计算准确率
    val evaluator = new MulticlassClassificationEvaluator()
      .setLabelCol("label")
      .setPredictionCol("prediction")
      .setMetricName("accuracy")
    val accuracy = evaluator.evaluate(predictions)
    println(s"Test Accuracy = $accuracy")
  }
}

代码的主要步骤如下:

  • 创建一个SparkSession对象,这是使用Spark MLlib进行数据处理和模型训练的入口点。

  • 读取一个CSV文件作为数据集,假设该数据集包含"label"和"features"两列,其中"label"是目标变量,而"features"是特征变量。

  • 将"features"列的数据类型转换为double,因为逻辑回归通常需要数值型特征。

  • 从数据集中选择"label"和"features"列,得到一个新的DataFrame,用于后续的模型训练和评估。

  • 将数据集划分为训练集和测试集,比例分别为70%和30%。

  • 创建一个LogisticRegression对象,并设置最大迭代次数和正则化参数。

  • 使用训练数据拟合逻辑回归模型。

  • 使用训练好的模型对测试集进行预测。

  • 展示预测结果中的前10条记录,包括预测值和真实标签。

  • 使用MulticlassClassificationEvaluator计算测试集的准确率。

  • 打印出测试集的准确率。 

拓展-逻辑回归算法介绍及用法

方法/算法关键字描述示例
二项逻辑回归binomial logistic regression用于预测二元结果,即输出结果为两个类别之一。使用Spark MLlib的LogisticRegression类,设置family参数为binomial来进行二项逻辑回归。
多项逻辑回归multinomial logistic regression用于预测多类结果,即输出结果为多个类别之一。使用Spark MLlib的LogisticRegression类,设置family参数为multinomial来进行多项逻辑回归。
随机梯度下降(SGD)stochastic gradient descent一种优化算法,用于最小化逻辑回归的损失函数。在Spark MLlib中,可以通过设置solver参数为sgd来使用随机梯度下降优化算法。
L-BFGSL-BFGS一种准牛顿法优化算法,用于快速求解大规模优化问题。在Spark MLlib中,可以通过设置solver参数为lbfgs来使用L-BFGS优化算法。
弹性网络正则化elastic net regularization结合了L1和L2正则化,用于防止过拟合。在Spark MLlib的LogisticRegression类中,通过设置elasticNetParam参数来调整L1和L2正则化的权重。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1616163.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

管理集群工具之LVS

管理集群工具之LVS 集群概念 将很多机器组织在一起,作为一个整体对外提供服务集群在扩展性、性能方面都可以做到很灵活集群分类 负载均衡集群:Load Balance高可用集群:High Availability高性能计算:High Performance Computing …

OpenCV轻松入门(九)——使用第三方库imgaug自定义数据增强器

安装命令:pip install imgaug 代码实现: import cv2 import random import matplotlib.pyplot as pltfrom imgaug import augmenters as iaa # 数据增强——缩放效果 def zoom_img(img):# 获取一个1-1.3倍的线性图像处理器,scale参数是缩放范…

计算机视觉 | 交通信号灯状态的检测和识别

Hi,大家好,我是半亩花海。本项目旨在使用计算机视觉技术检测交通信号灯的状态,主要针对红色和绿色信号灯的识别。通过分析输入图像中的像素颜色信息,利用OpenCV库实现对信号灯状态的检测和识别。 目录 一、项目背景 二、项目功能…

项目大集成

一 keeplived 高可用 192.168.11.11nginx keeplived192.168.11.12nginx keeplived 两台均编译安装服务器 1 主服务器修改文件: 2 备服务器修改文本 scp keepalived.conf 192.168.11.12:/etc/keepalived/ 3 给主服务器添加虚拟ip ifconfig ens33:0 192.168…

React.js 3D开发快速入门

如果你对 3D 图形的可能性着迷,但发现从头开始创建 3D 模型的想法是不可能的 - 不用担心! Three.js 是一个强大的 JavaScript 库,它可以帮助我们轻松地将现有的 3D 模型集成到 React 应用程序中。因此,在本文中,我将深…

DHCP服务器配置故障转移后显示红色箭头、与伙伴服务器失去联系的解决方案

一、遇到的故障现象: (主DHCP服务器与备用DHCP服务器连通性正常,在故障转移选项卡上却显示与伙伴失去联系、伙伴关闭,且ipv4协议旁边显示一个红色的小箭头),正常情况下是绿色 (一)…

Jenkins CI/CD 持续集成专题二 Jenkins 相关问题汇总

一 问题一 pod [!] Unknown command: package 1.1 如果没有安装过cocoapods-packager,安装cocoapods-packager,sudo gem install cocoapods-packager 1.2 如果已经安装cocoapods-packager,还是出现上面的错误,有可能是pod的安…

通过创新的MoE架构插件缓解大型语言模型的世界知识遗忘问题

在人工智能领域,大型语言模型(LLM)的微调是提升模型在特定任务上性能的关键步骤。然而,一个挑战在于,当引入大量微调数据时,模型可能会遗忘其在预训练阶段学到的世界知识,这被称为“世界知识遗忘…

Valentina Studio Pro for Mac:强大的数据库管理工具

Valentina Studio Pro for Mac是一款功能全面、操作高效的数据库管理工具,专为Mac用户设计,旨在帮助用户轻松管理各种类型的数据库。 Valentina Studio Pro for Mac v13.10激活版下载 该软件拥有直观的用户界面,使得数据库管理变得简单直观。…

JS - 以工厂模式和原型模式方式建造对象、JS的垃级回收机制、数组的使用

创建对象的方式 使用工厂方法来建造对象 在JS中我们可以通过以下方式进行创建对象: var obj {name:"孙悟空",age:18,gender:"男",sayName:function(){alert(this.name);}};var obj2 {name:"猪八戒",age:28,gender:"男",…

学习ArkTS -- 状态管理

装饰器 State 在声明式UI中,是以状态驱动试图更新: 状态(State):指驱动视图更新的数据(被装饰器标记的变量) 视图(View):基于UI描述渲染得到用户界面 说明…

Next.js+React+Node系统实战,搞定SSR服务器渲染

Next.jsReactNode系统实战,搞定SSR服务器渲染 Next.js React Node.js 实战:实现服务器端渲染(SSR) 项目概述 在这个项目中,我们将探讨如何使用 Next.js、React 和 Node.js 来构建一个服务器渲染的 web 应用程序。通…

无人驾驶 自动驾驶汽车 环境感知 精准定位 决策与规划 控制与执行 高精地图与车联网V2X 深度神经网络学习 深度强化学习 Apollo

无人驾驶 百度apollo课程 1-5 百度apollo课程 6-8 七月在线 无人驾驶系列知识入门到提高 当今,自动驾驶技术已经成为整个汽车产业的最新发展方向。应用自动驾驶技术可以全面提升汽车驾驶的安全性、舒适性,满足更高层次的市场需求等。自动驾驶技术得益于人工智能技术的应用…

unity读写本地excel_2024.4.22

using System.Collections; using System.Collections.Generic; using UnityEngine; using OfficeOpenXml; using System.IO; using Excel; using System.Data; using System; /// <summary> /// https://blog.csdn.net/Xz616/article/details/128893023 /// Unity3D操作…

【入门篇】本章包括创建云项目、数据库的使用、云存储管理、云函数的基本使用、实战举例(小程序之云函数开发入门到使用发布上线实操)

云函数 云函数相当于服务器接口的概念,它并属于小程序端代码。它是以函数的形式运行后端代码来响应事件以及调用其他服务。运行环境是Node.js。 一、基创建云函数项目 打开微信开发者工具: 打开微信开发者工具,并登录你的微信开发者账号。 创建项目: 如果还没有创建项目,你…

给字符串添加加粗标签(AC自动机+Python)

可以暴力解决&#xff0c;但是为了锻炼一下ac自动机的编程&#xff0c;我们使用ac自动机。 ac自动机主要维护两个列表&#xff0c;一个列表ch&#xff0c;ch[f][idx]表示从父节点f向idx这个方向走&#xff0c;走到的节点。另一个列表nex&#xff0c;nex[i]表示节点i回跳边的节…

机器学习 -- 分类问题

场景 探讨了一个回归任务——预测住房价格&#xff0c;用到了线性回归、决策树以及随机森林等各种算法。本次中我们将把注意力转向分类系统。我们曾经对MNIST进行了分类任务&#xff0c;这次我们重新回到这里&#xff0c;细致的再来一次。 开始 获取数据 Scikit-Learn提供了…

BFS解决FloodFill算法:(Leetcode:200. 岛屿数量)

题目链接&#xff1a;200. 岛屿数量 - 力扣&#xff08;LeetCode&#xff09; 本题由于没有给出开始搜索的位置&#xff0c;所以每一个位置都要进行一次广度优先搜索 另外为了不修改原数组数据&#xff0c;需要设置一个bool类型的二维数组vis来判断某个位置是否被搜索过 cl…

负载均衡的原理及算法

一、定义 负载均衡&#xff08;Load Balancing&#xff09;是一种计算机网络和服务器管理技术&#xff0c;旨在分配网络流量、请求或工作负载到多个服务器或资源&#xff0c;以确保这些服务器能够高效、均匀地处理负载&#xff0c;并且能够提供更高的性能、可用性和可扩展性。…

【链表】Leetcode 两两交换链表中的结点

题目讲解 24. 两两交换链表中的节点 算法讲解 只需要模拟这个过程就行了&#xff0c;但是需要注意空指针的问题&#xff0c;特别是nnext指针 /*** Definition for singly-linked list.* struct ListNode {* int val;* ListNode *next;* ListNode() : val(0), ne…