随想录日记part49
t i m e : time: time: 2024.04.20
主要内容:今天开始要学习单调栈的相关知识了,今天的内容主要涉及:柱状图中最大的矩形
- 84.柱状图中最大的矩形
Topic184.柱状图中最大的矩形
题目:
思路:
代码实现如下:
class Solution {
public int largestRectangleArea(int[] heights) {
// 双指针法
int result = 0;
int len = heights.length;
int[] left = new int[len];
int[] right = new int[len];
left[0] = -1;
for (int i = 1; i < len; i++) {
int t = i - 1;
while (t >= 0 && heights[t] >= heights[i])
t = left[t];
left[i] = t;
}
right[len - 1] = len;
for (int i = len - 2; i >= 0; i--) {
int t = i + 1;
while (t < len && heights[t] >= heights[i])
t = right[t];
right[i] = t;
}
for (int i = 0; i < len; i++) {
int tem = heights[i] * (right[i] - left[i] - 1);
result = Math.max(tem, result);
}
return result;
}
}
时间复杂度:
O
(
n
)
O(n)
O(n)
空间复杂度:
O
(
n
)
O(n)
O(n)
Topic2 接雨水
思路:
与接雨水很像
class Solution {
public int largestRectangleArea(int[] heights) {
int result = 0;
int len = heights.length;
int[] newheights = new int[len + 2];
newheights[0] = 0;
newheights[len + 1] = 0;
for (int i = 0; i < len; i++) {
newheights[i + 1] = heights[i];
}
heights = newheights;
Stack<Integer> stack = new Stack<>();
stack.push(0);
for (int i = 1; i < len + 2; i++) {
if (heights[i] > heights[stack.peek()]) {
stack.push(i);
} else if (heights[i] == heights[stack.peek()]) {
stack.pop();
stack.push(i);
} else {
while (!stack.isEmpty() && heights[i] < heights[stack.peek()]) {
int mid = stack.pop();
if (!stack.isEmpty()) {
int h = heights[mid];
int w = i - stack.peek() - 1;
result = Math.max(h * w, result);
}
}
stack.push(i);
}
}
return result;
}
}
class Solution {
public int trap(int[] height) {
// 双指针法
int result = 0;
int len = height.length;
for (int i = 0; i < len; i++) {
if (i == 0 || i == len - 1)
continue;
int lheight = height[i];
int rheight = height[i];
for (int l = i - 1; l >= 0; l--) {
lheight = Math.max(lheight, height[l]);
}
for (int r = i + 1; r < len; r++) {
rheight = Math.max(rheight, height[r]);
}
int tem = Math.min(rheight, lheight) - height[i];
if (tem > 0)
result += tem;
}
return result;
}
}
时间复杂度:
O
(
n
)
O(n)
O(n)
空间复杂度:
O
(
n
)
O(n)
O(n)