很显然,HAMR已经成为业内用于提升HDD硬盘容量硬盘的技术手段。三家机械硬盘HDD厂商,希捷、西数、东芝都已对HAMR硬盘进行了十多年的研究,但只有希捷大胆押注HAMR。相反,东芝和西部数据在采用HAMR之前选择了能量辅助垂直磁记录(ePMR)和微波辅助磁记录(MAMR)。
WDC西部数据目前还没着急推出HAMR产品,主要是在PMR基础上,通过OptiNAND技术提升容量。
OptiNAND技术的核心就是新增了iNAND UFS EFD,把磁道记录等元数据记录在iNAND之中。采用triple stage actuator (TSA) 技术,实现更大的实现更大的TPI(每英寸磁道)数量和更高的面密度,在不需要增加碟片数量和磁头数量的情况下,实现容量的提升。原来放置在碟片的元数据,现在放在iNAND,也相当于给用户腾空了原来占用的数据空间,利于用户容量的提升。
东芝在HAMR技术之前,先推出了MAMR(磁通控制MAMR)技术的产品,通过微波磁通控制现象来提高高密度区域的写入信号质量。根据东芝公布的测试数据发现,MAMR的磁头可靠性比HAMR的磁头可靠性要高出好几个数量级,也就是说,MAMR当前的可靠性比HAMR要高。
现在,我们再回顾下HAMR的实现原理。HAMR(Heat Assisted Magnetic Recording,热辅助磁记录技术)采用了一种新型的介质磁技术,数据颗粒位的占用空间会更小,密度也会相应增加,从而达到提升容量的目的,同时保持磁稳定和热稳定。
在需要写入新数据的时候,磁头上激光二极管就会瞬间在颗粒位增加热量,使得单个颗粒位实现磁极性完成反转,从而完成写数据的过程。
这个加热/冷却完成数据存储的过程持续的时间非常短,不到1ns(部分学术研究数据约150ps), 原则上对硬盘整体的稳定性和可靠性没有太大影响。
不过,这个激光二极管在颗粒位产生的温度达到400-700C,保证基板和其他部件的高温影响,可靠性这部分对于HAMR来说,仍然有很多的难点需要突破,这也是HAMR为何研究了十几年,却一直无法大规模生产的原因。
所以说,HAMR主要有瞬间的高温影响,HAMR磁头的稳定性一直是业内最为担心的因素。降低HAMR加热温度,也是各个厂家努力的方向。
美国加州大学Samarth Bhargava 和 Eli Yablonskitch之前发布的一篇论文中介绍,用于向介质传递纳米尺度热量的金属光学天线或近场转换器(Near-Field Transducer, NFT)自身可能会升温数百度。当NFT达到如此极端的温度时,HAMR技术的实际演示中观察到的写头寿命比商业产品所需寿命低几个数量级。因此,NFT的热可靠性至关重要。
在论文中,研究人员首先推导出NFT自热的基本极限,为实现低温运行提供设计指导,提出的新型结构通过将NFT自热减少近40%或170°C,相比典型工业设计,可能实现可靠性提高数个数量级。
此外,根据希捷官网介绍,其2016 年以来,一直在为 HAMR Mozaic 3+ 平台产品进行模拟现场使用测试,并针对关键组件的一步步优化。在过去的两年里,结果是可靠性提高了 50%,达到了传统 PMR 硬盘的水平,即HAMR也达到了PMR硬盘的额定平均故障间隔时间 (MBTF) 250 万小时。
此外,官网文档介绍通过高强度的现场使用压力测试已经证明HAMR磁头寿命可以达到 7+年,在大多数情况下超过了当前基于 PMR 的寿命和用户预期。希捷反馈已经生产并测试了超过 50 万个HAMR Mozaic 3+ 设备。
这些都是官方的说明,HAMR的可靠性还需要大规模验证,才能反馈其真正的可靠性。对于HAMR作为新的介质平台进行大规模商用,小编对其可靠性还是持保留态度,待其大规模验证后,再作评论!
针对HAMR的可靠性,各位读者有什么不同的看法,欢迎留言评论交流!
参考文献:
-
HAMR_Thermal_Reliability_via_Inverse_Electromagnet.pdf
-
https://www.seagate.com/cn/zh/blog/seagate-hamr-solutions-deliver-industry-leading-reliability/
如果您看完有所受益,欢迎点击文章底部左下角“关注”并点击“分享”、“在看”,非常感谢!
精彩推荐:
-
万物皆可计算|下一个风口:近内存计算
-
SSD数据错误如何修复?
-
CXL与PCIe世界的尽头|你相信光吗?
-
全景剖析SSD SLC Cache缓存设计原理
-
存储革新:下一代低功耗PCM相变存储器
-
3D DRAM虽困难重重,最快明年到来
-
字节跳动入局存储内存SCM
-
解读“CFMS中国闪存市场峰会”存储技术看点
-
首个业内DNA存储技术规范发布
-
如何突破SSD容量提升的瓶颈?
-
固态存储是未来|浅析SSD架构的演进与创新技术
-
论文解读:NAND闪存中读电压和LDPC纠错码的高效设计
-
华为新发布磁电存储“王炸”,到底是什么?
-
SSD LDPC软错误探测方案解读
-
关于SSD LDPC纠错能力的基础探究
-
存储系统如何规避数据静默错误?
-
PCIe P2P DMA全景解读
-
深度解读NVMe计算存储协议
-
对于超低延迟SSD,IO调度器已经过时了吗?
-
浅析CXL P2P DMA加速数据传输的原理
-
NVMe over CXL技术如何加速Host与SSD数据传输?
-
浅析LDPC软解码对SSD延迟的影响
-
为什么QLC NAND才是ZNS SSD最大的赢家?
-
SSD在AI发展中的关键作用:从高速缓存到数据湖
-
浅析不同NAND架构的差异与影响
-
SSD基础架构与NAND IO并发问题探讨
-
字节跳动ZNS SSD应用案例解析
-
CXL崛起:2024启航,2025年开启新时代
-
NVMe SSD:ZNS与FDP对决,你选谁?
-
浅析PCI配置空间
-
浅析PCIe系统性能
-
存储随笔《NVMe专题》大合集及PDF版正式发布!
如果您也想针对存储行业分享自己的想法和经验,诚挚欢迎您的大作。
投稿邮箱:Memory_logger@163.com (投稿就有惊喜哦~)
《存储随笔》自媒体矩阵
更多存储随笔科普视频讲解,请移步B站账号:
如您有任何的建议与指正,敬请在文章底部留言,感谢您不吝指教!如有相关合作意向,请后台私信,小编会尽快给您取得联系,谢谢!