GPT与Python结合应用于遥感降水数据处理、ERA5大气再分析数据的统计分析、干旱监测及风能和太阳能资源评估

news2024/11/17 1:26:59

如何结合最新AI模型与Python技术处理和分析气候数据。介绍包括GPT-4等先进AI工具,旨在帮助大家掌握这些工具的功能及应用范围。内容覆盖使用GPT处理数据、生成论文摘要、文献综述、技术方法分析等实战案例,能够将AI技术广泛应用于科研工作。特别关注将GPT与Python结合应用于遥感降水数据处理、ERA5大气再分析数据的统计分析、干旱监测及风能和太阳能资源评估等大气科学关键场景。提升参与者在数据分析、趋势预测和资源评估等方面的能力,激发创新思维,并通过实践操作深化对AI在气象数据分析中应用的理解。

1、掌握AI工具应用:熟练掌握如GPT-4等前沿AI工具在大气科学中的应用,包括数据获取、处理和分析。

2、提高编程技能:通过GPT的实践操作,提升使用Python编程技术处理气象数据的能力,包括使用相关库(如xarray、pandas)进行数据分析和可视化。

3、增强数据分析能力:能够独立进行气候数据的趋势分析、干旱监测、风能与太阳能资源评估等复杂数据分析,使其能够识别和解释气候变化模式。

原文链接icon-default.png?t=N7T8https://mp.weixin.qq.com/s?__biz=MzUyNzczMTI4Mg==&mid=2247685362&idx=4&sn=f75fb6c1be6ac16ba4623763f595573d&chksm=fa774bcfcd00c2d9ac1fc3510d6da683582e1ab3816ed969ce3c351833ff676f90e3421e33b9&token=1090362660&lang=zh_CN#rd

专题一、预备知识

1、AI领域常见工具模型讲解

1.1.OpenAI模型-GPT-4

1.2.谷歌新模型-Gemini

1.3.Meta新模型-LLama

1.4.科大讯飞-星火认知

1.5.百度-文心一言

1.6.MoonshotAI-Kimi

2、POE平台及ChatGPT使用方法

2.1.POE使用方法

2.2.ChatGPT使用方法

图片

3、提示词工程

3.1.提示词工程介绍

3.2.提示词工程讲解

3.3.提示词常见模板

4、Python简明教程

4.1.Python基本语法

4.2.Numpy使用

4.3.Pandas使用

4.4.Xarray使用

4.5.Matplotlib使用

专题二、科研辅助专题

1、GPT作为科研工具

1.1把GPT当作搜索引擎

图片

1.2把GPT当作翻译软件

图片

1.3把GPT当作润色工具

图片

1.4用GPT提取整理文章数据

1.5用GPT数据处理

2.GPT作为科研助手生成

2.1用GPT分析结果

2.2用GPT总结生成论文摘要

2.3用GPT总结生成文献综述

2.4用GPT分析论文技术方法

2.5用GPT分析代码

图片

2.6用GPT分析论文公式

2.7用GPT识别图片并分析

2.8 DIY:上传本地PDF资料

用GPT分析相关资料中提出问题。

用GPT总结评价(评阅、审稿意见)

3、GPT作为辅助工具下载数据

3.1使用GPT生成PERSIANN /GSMaP数据的下载代码

图片

3.2使用GPT生成代码下载GSOD数据

图片

3.3使用GPT生成代码下载NCEP/NCAR再分析数据

图片

3.4使用GPT生成代码下载GFS预报数据

图片

专题三、可视化专题——基于GPT实现

1、绘制常见统计图

2、绘制风场图、风羽图、风矢图、流线图

图片

3、通过GPT绘制双Y轴

图片

4、风玫瑰图

图片

5、.填充图

图片

6、绘制添加子图

图片

7、绘制期刊常见图

图片

专题四、站点数据处理

使用GPT处理/生成相应代码,实现下列目标:

1、读取数据

1.1读取多种来源原始数据(ISD、GSDO)

2、缺失值处理

2.1缺失值统计

2.2常见统计方法缺失值填补

2.3机器学习方法填补数据

3、数据质量控制

3.1基于统计阈值的异常检测

3.2基于机器学习的异常检测(Isolation Forest等方法)

3.3多变量数据的异常检测(服务于自动气象站数据)

3.4基于时间序列方法均一化检验(服务于长时间气候变化评估)

4、时间序列的趋势

4.1移动平均法

4.2分解法(STL, Seasonal and Trend decomposition using loess)

4.3Sen’s斜率

5、时间序列的突变检验

5.1 MK (Mann-Kendall): Mann-Kendall趋势检验(用于分析数据集中的趋势变化)

5.2 Pettitt: Pettitt检验(非参数检验方法,用于检测时间序列中的单一变化点)

5.3 BUT (Buishand U Test): Buishand U型统计检验

5.4 SNHT (Standard Normal Homogeneity Test): 标准正态同质性检验(常用于气候数据的同质性检测)

5.5 BG (Buishand Range Test): Buishand范围检验

6、时间序列周期分析

6.1功率谱方法提取周期(提取气温、降水等周期)

图片

6.2小波分析方法提取周期

图片

6.3 EMD经验模态分解

图片

6.4 EEMD集成经验模态分解

7、时间尺度上的统计

7.1不同时间尺度上的统计

8、回归分析

8.1线性回归(Linear Regression):简单线性回归、多元线性回归等

8.2多项式回归(Polynomial Regression):

8.3非参数回归(Non-parametric Regression):

9、相关分析

9.1常见的相关系数(Pearson Correlation Coefficient、Spearman's Rank Correlation Coefficient)

9.2偏相关分析(Partial Correlation)

图片

9.3典型相关分析(Canonical Correlation Analysis, CCA)

图片

10、站点数据的空间化:

10.1克里格插值

10.2临近点插值

10.3反距插值

图片

10.4 基于高程模型的外推

图片

专题五、WRF专题——基于GPT和Python实现

1、静态数据的替换

1.1使用Python生成WPS的静态数据

A替换反照率和LAI数据

GPT生成转化GLASS(The Global Land Surface Satellite (GLASS) Product suite)替换默认粗分辨率数据。

B替换土地利用

GPT将多分类的ECI CCI土地利用数据分类进行整合,使之能够用于WPS系统;GPT生成转化代码,将数据转化为WPS可读取的二进制格式。

使用Python更改WRF初始场

GPT生成代码修改WRF初始场文件,并替换土地利用、地表反照率等静态数据。

2、生成WRF配置文件

2.1在指定的地区推荐WRF namelist.input文件相关参数

2.2补全相关参数信息

3、WRF的后处理

3.1站点插值

3.2能见度计算

3.3垂直高度变量插值

3.4降水相态辨识

3.5水汽通量

4、WRF的评估

4.1格点尺度评估

4.2点尺度评估

4.3模态评估

图片

专题六、遥感降水专题——基于GPT和Python实现

1、将PERSSIAN/GSMaP数据转化为netCDF格式

2、合并数据

3、时间域统计并可视化

4、空间域统计并可视化

5、常见统计评估指标

生成统计指标空间图

生成泰勒图

生成卫星降雨散点密度图

图片

图片

专题七、再分析数据专题——基于GPT和Python实现

1、ERA5再分析数据

1.1 ERA5数据的下载

1.2 ERA5数据预处理

1.3多时间尺度统计

1.4干旱监测

计算标准化降水蒸散指数(SPEI)或标准化降水指数(SPI)作为干旱监测的指标。

根据土壤湿度和降水量数据,使用时间序列分析和阈值判断来评估干旱风险等级。

1.5极端指数计算

连续干旱天数

夏日指数

R99极端降水指数等

1.6趋势分析

滑动平均

累积距平

趋势分析代码

时间序列分析

2、多套再分析数据的气候趋势分析

2.1对比NCEP/NCAR、ERA5、CRU等均值

2.2趋势分析

3、风能资源评估

3.1计算研究区域内多年的平均风速

3.2计算风速的季节性变化和年际变异性

3.3计算空气密度

3.4计算盛行风

3.5计算风功率

3.6计算weibull分布

3.7基于站点和WRF模式的分析

图片

3.8基于ERA5计算风功率

图片

4、太阳能资源评估

4.1计算每天的平均太阳辐射量

4.2分析日、月和季节性气候态时空格局

4.3计算趋势

专题八、CMIP6未来气候专题——基于GPT和Python实现

1、数据预处理:

1.1使用NetCDF工具(xarray)读取数据

1.2裁剪时间范围和空间范围

2、计算区域平均温度:

2.1对于全球平均温度加权平均

2.2对于特定区域,直接计算平均值

3、趋势分析:

3.1使用统计方法(如线性回归)分析温度随时间的变化趋势

4.可视化:

4.1绘制时间序列图显示温度趋势

4.2使用地图可视化工具(basemap)展示空间分布的变化

图片

专题九、基于机器学习方法判断天气晴雨——基于GPT和Python实现机器学习操作流程 1、预处理

1.1缺失值处理:使用适当的策略填充或删除数据中的缺失值

1.2数据探索:通过统计摘要、可视化方法(如直方图、箱线图)来理解数据的分布、异常值情况和变量之间的关系

1.3数据标准化/归一化

1.4数据类型转换:将分类变量转换为数值型,使用独热编码(One-Hot Encoding)或标签编码(Label Encoding)

2、数据采样

2.1均衡采样:对不平衡的数据集进行重采样,确保各类别样本数量大致相同 

2.2分层抽样:确保训练集和测试集中各类别样本的比例与原数据集相同,使用分层采样技术。

2.3交叉验证分割:采用交叉验证的方法来进行更可靠的模型评估,如K折交叉验证,保证每个样本被用于训练和验证。

2.4时间序列分割:对于时间序列数据,使用时间顺序分割数据,确保训练集中的数据点时间上早于测试集中的数据点。

3、特征工程

3.1特征选择:使用统计测试、模型系数或树模型的特征重要性来选择最有信息量的特征

3.2降维:使用主成分分析(PCA)、线性判别分析(LDA)等方法减少特征的维度

3.3多项式特征:生成特征的多项式组合,如平方项、交互项,以捕捉特征之间的非线性关系

4、模型建模与堆叠

4.1单模型训练:如决策树、SVM、随机森林。

4.2模型堆叠:使用mlxtend库或自定义方法实现模型堆叠,结合不同模型的预测结果作为新的特征,训练一个新的模型。

4.3调参:使用网格搜索(GridSearchCV)或随机搜索(RandomizedSearchCV)等方法优化模型参数。

4.4集成学习:除了堆叠,还可以探索其他集成方法,如Bagging和Boosting,以提高模型的稳定性和准确性。

5、模型评估

5.1性能指标:根据问题类型(分类或回归)选择合适的评估指标,如准确度、召回率、F1分数、AUC值、均方误差

5.2模型解释性:使用SHAP对模型的预测进行解释,提高模型的可解释性

原文链接icon-default.png?t=N7T8https://mp.weixin.qq.com/s?__biz=MzUyNzczMTI4Mg==&mid=2247685362&idx=4&sn=f75fb6c1be6ac16ba4623763f595573d&chksm=fa774bcfcd00c2d9ac1fc3510d6da683582e1ab3816ed969ce3c351833ff676f90e3421e33b9&token=1090362660&lang=zh_CN#rd

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1614764.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Leetcode138_随机链表的复制

1.leetcode原题链接:. - 力扣(LeetCode) 2.题目描述 给你一个长度为 n 的链表,每个节点包含一个额外增加的随机指针 random ,该指针可以指向链表中的任何节点或空节点。 构造这个链表的 深拷贝。 深拷贝应该正好由 …

java新冠病毒密接者跟踪系统(springboot+mysql源码+文档)

风定落花生,歌声逐流水,大家好我是风歌,混迹在java圈的辛苦码农。今天要和大家聊的是一款基于springboot的新冠病毒密接者跟踪系统。项目源码以及部署相关请联系风歌,文末附上联系信息 。 项目简介: 新冠病毒密接者跟…

【C++】priority_queue(优先级队列介绍、仿函数控制大堆小堆、模拟实现)

一、优先级队列 1.1介绍 优先级队列(Priority Queue)是一种特殊的数据结构,其并不满足队列先进先出的原则,它结合了队列和堆的特点,允许我们在其中插入元素,并且能够保证任何时候提取出的元素都是当前队列…

网络编程学习——IO多路复用

目录 ​编辑 一,多路复用 1,IO的分类 2,IO的效率 二,Linux环境下实现通信的多路复用 1,select select的特点: 参数: 操作函数: 返回值: 使用select实现网络通信…

面试八股——集合——List

主要问题 数组 如果数组索引从0开始时,数组的寻址方式为: 如果数组索引从1开始时,数组的寻址方式为: 此时对于CPU来说增加了一个减法指令,降低寻址效率。 ArrayList⭐ ArrayList构造函数 尤其说一下第三个构造函数流…

ThreadLocal中为什么使用弱引用

ThreadLocal中为什么使用弱引用 补个概念: ThreadLocalMap中的key就是Entry,Entry是一个弱引用,关联了当前ThreadLocal对象。需要存储的数据为值。调用set方法要传入两个参数ThreadLocal对象和要存入ThreadLocal对象的数据。 如下图&#xf…

MQTT Broker 白皮书:全面实用的 MQTT Broker 选型指南

在智能数字化时代,家居设备、工厂传感器、智能汽车、能源电力计量表等各类设备都已变身为新型的智能终端。为了满足这些海量且持续增长的智能设备之间对于实时、可靠的消息传递的需求,MQTT Broker 消息代理或消息中间件扮演了至关重要的角色。作为新一代…

OSI七层模型、TCP/IP五层模型理解(个人解读,如何理解网络模型)

OSI七层模型 七层模型,亦称OSI(Open System Interconnection)。参考模型是国际标准化组织(ISO)制定的一个用于计算机或通信系统间互联的标准体系,一般称为OSI参考模型或七层模型。它是一个七层的、抽象的模…

react 安装教程

1、安装脚手架 脚手架主要分为三个部分: react:顶级库。 react-dom:运行环境。 react-scripts:运行和打包react应用程序的脚本和配置。 npm install -g create-react-app 2、创建项目 #查看版本号 create-react-app -V #创建项目 creat…

Linux磁盘及读写数据原理/Raid技术/硬软raid及企业案例/磁盘分区环境搭建/格式化磁盘系列-12213字

高薪思维: 怎么才能一直去坚持下去? 1.做这件事情的好处,对自己一直去放大。 2.不做的坏处,并放大 3.学习痛苦?还是去上班(餐饮、外卖痛苦?) 用比学习更痛苦的事情,去对抗…

记一次普通的单表查询sql优化,去掉文件排序

一现象: 有空观察了线上某个sql语句执行计划,发现在500多毫秒左右,打算进行下优化。 二步骤: 对查询列assessment_periodic_id、assessment_user_id、create_time添加了组合索引并指定了倒叙。加入create_time 使查询结果不需要在…

【华为OD笔试】2024D卷机考套题汇总【不断更新,限时免费】

有LeetCode算法/华为OD考试扣扣交流群可加 948025485 可上全网独家的 欧弟OJ系统 练习华子OD、大厂真题 绿色聊天软件戳 od1441了解算法冲刺训练(备注【CSDN】否则不通过) 文章目录 2024年4月17日(2024D卷)2024年4月18日&#xff…

15.C++常用的算法_拷贝和替换算法

文章目录 遍历算法1. copy()代码工程运行结果 2. replace()代码工程运行结果 3. replace_if()代码工程运行结果 4. swap()代码工程运行结果 遍历算法 1. copy() 代码工程 copy()函数不要因为使用而使用#define _CRT_SECURE_NO_WARNINGS #include<iostream> #include&l…

Java代码基础算法练习-分段函数求值-2024.04.21

任务描述&#xff1a; 有一个函数&#xff0c;写一段程序&#xff0c;输入x&#xff0c;输出y。 任务要求&#xff1a; 代码示例&#xff1a; package April_2024;import java.util.Scanner;public class a240421 {public static void main(String[] args) {Scanner sc new S…

根文件系统的构建

文章目录 一、根文件系统是什么&#xff1f;二、根文件目录1.bin目录2.etc3.lib4.mnt5.proc6.sys7.usr8.dev9.opt10.var 三.使用工具Busybox构建根文件系统1.rootfs文件夹创建2.在makefile中添加交叉编译器3.busybox 中文字符支持4.配置 默认busybox5.使用图形界面配置busybox6…

Mysql 、Redis 数据双写一致性 更新策略与应用

零、important point 1. 缓存双写一致性问题 2. java实现逻辑&#xff08;对于 QPS < 1000 可以使用&#xff09; public class UserService {public static final String CACHE_KEY_USER "user:";Resourceprivate UserMapper userMapper;Resourceprivate Re…

部署Hyperledger Fabric测试区块链网络

一. 快速启动区块链测试网络 启动Fabric虚拟机 将 fabric-samples.zip 拷贝进虚拟机 ubzip fabric-samples.zip 解压并重命名为fabric-samples mv fabric-samples-main fabric-samples 拷贝bin和config目录 cd fabric-samples cp ~/fabric/bin bin -r cp ~/fabric/config …

企业如何走出“费控”迷雾,打造逆势增长“新引擎”?

“你先自己垫一下&#xff0c;回头再报销。”职场中人或多或少都听到过这句话&#xff0c;这一等可能就是猴年马月。 报销数字化仅仅是企业费控管理的一方面&#xff0c;随着企业对费用的认知从“管控”到“管理”的升级&#xff0c;企业对于费用管理的期望也向全流程、精细化&…

报错The chromedriver version cannot be discovered以及下载chromedriver.exe和查看其版本的命令

python3.8.10&#xff0c;win10。 谷歌浏览器版本&#xff08;我写代码的时候还是123.0.x.x&#xff0c;没几天就自动更新到124.0.x.x了&#xff09;&#xff1a; 在使用selenium的时候&#xff0c;出现报错&#xff0c;The chromedriver version cannot be discovered。 &am…

C语言中字符串函数以及内存函数的使用和注意事项

目录 0. 前言 1、求字符串长度函数 1.1、strlen 模拟实现 2.长度不受限制的字符串函数 2.1 strcpy 模拟实现 2.2strcat 模拟实现 2.3strcmp 模拟实现 3.长度受限制的字符串函数 3.1strncpy 3.2strncat 3.3strncmp 4、字符串查找函数 4.1strstr 模拟实现 3.2strt…