Yolov8项目实践——基于yolov8与OpenCV实现目标物体运动热力图

news2025/1/16 16:00:14

概述

在数据驱动和定位的世界中,对数据进行解释、可视化和决策的能力变得日益重要。这表明,使用正确的工具和技术可能是项目成功的关键。在计算机视觉领域,存在许多技术来解释从视频(包括录像、流媒体或实时视频)中获取的数据,特别是在评估需要分析交通强度或某些对象(如人、车辆、动物等)行为的区域时,热力图是一个极其有效的选择。

物体运动热力图可以展示物体在一段时间内的运动轨迹和活动强度。这种图表通常通过颜色的变化来表示不同区域的运动热度,颜色的深浅代表了物体在该区域的运动频率或者速度的快慢。在物理学和计算机视觉领域,热力图可以用于分析和理解物体的运动模式,例如人流监控、交通流量分析或者运动员的运动轨迹分析。

在传统的计算机视觉图像处理,使用OpenCV库背景减除法来识别和追踪视频中的移动物体,然后将这些信息累积起来,形成热力图。可以有效地突出显示物体运动的高频区域,帮助研究者或分析师更好地理解物体的运动模式,但传统的计算机视觉图像处理在一些场景变化比较的情况下,性能并不理想。

在多目标跟踪(MOT)领域,Tracking-by-detection它可以依赖于目标检测器来识别视频中的每个目标,然后使用跟踪算法来关联检测结果,形成目标的连续轨迹。这种方法的关键在于如何有效地关联来自不同帧的检测框,以便为每个目标创建准确且连贯的轨迹。

Yolov8集成了BYTE方法,BYTE是一种创新的数据关联方法,它旨在提高多目标跟踪的准确性和连贯性。BYTE方法通过利用检测框和跟踪轨迹之间的相似性,可以在保留高置信度检测结果的同时,从低置信度检测结果中去除背景噪声,并挖掘出真正的物体。这对于处理遮挡、模糊等困难样本特别有效,因为这些情况下的目标检测往往更加具有挑战性。

BYTE能够降低漏检率并提高轨迹的连贯性。可以轻松地应用于多种现有的state-of-the-art MOT方法中,并且能够提升这些方法的IDF1指标,这表明了其强大的通用性和有效性。

基于BYTE方法,提出的跟踪方法ByteTrack进一步展示了其在MOT任务中的潜力。ByteTrack在保持高运行速度(30 FPS)的同时,在MOT17基准测试上取得了显著的性能提升,包括80.3的MOTA(Multiple Object Tracking Accuracy)、77.3的IDF1和63.1的HOTA(High Order Track Accuracy)。这些结果表明,ByteTrack在处理多目标跟踪任务时,不仅能够准确地关联检测框,还能够有效地处理目标间的交互和复杂场景,从而实现高精度的轨迹跟踪。

实现效果:

基于yolov8与OpenCV实现目标物体运动热力图

基于Yolov8的运动热力图

1.环境安装

conda create -n yolov8 python=3.8
activate ylolv8
pip install ultralytics

2.下载模型

可以从官网上下载需要的模型,官网提供了几种不同尺寸的模型:
在这里插入图片描述

3.项目实践步骤

这里以一段航拍视频为例,视频是用俯视的一个三叉路口,目标是创建一个热力图来展示这三条路汽车流量密集热力图。实现步骤如下:

目标检测:首先,需要对视频进行分析,识别出视频中的车辆以及它们在每帧中的位置

轨迹跟踪:通过多目标跟踪BYTE方法,关联视频中连续帧中检测到的车辆,形成每个车辆的轨迹。

数据关联:利用检测框和跟踪轨迹之间的相似性,去除背景噪声,挖掘出真正的车辆,降低漏检并提高轨迹的连贯性。

热力图生成:将检测到的车辆位置信息汇总,并使用热力图库来生成热力图。热力图通过颜色的深浅来表示车辆密度的高低。

4.代码实践

导入需要的库

from collections import defaultdict
import cv2
import numpy as np
from ultralytics import YOLO

调用Yolo目标检测的模型,

model = YOLO('yolov8s.pt')

读取视频

videopath = 'video.mp4'
cap = cv2.VideoCapture(videopath)

现在创建一个空字典来存储跟踪位置(‘track_history’)和一个字典来存储每个对象的最后推断位置(‘last_positions’)。

track_history = defaultdict(lambda: [])
last_positions = {}

在计算机视觉和视频分析中,涉及点跟踪或对象运动的场景时,需要计算两个点之间的欧几里得距离。欧几里得距离是两点之间的直线距离,可以通过勾股定理来计算。在二维空间中,如果两点的坐标分别是 p 1 ( x 1 , y 1 ) p1(x_1, y_1) p1(x1,y1) p 2 ( x 2 , y 2 ) p2(x_2, y_2) p2(x2,y2),那么它们之间的欧几里得距离 d d d可以通过以下公式计算:

d = ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} d=(x2x1)2+(y2y1)2

在Python中,你可以很容易地实现这个计算,以下是一个简单的函数示例:

def calculate_distance(p1, p2):
   return np.sqrt((p1[0] - p2[0]) ** 2 + (p1[1] - p2[1]) ** 2)

这个函数euclidean_distance接受两个点作为输入,每个点由其在二维空间中的(x, y)坐标定义。函数计算并返回这两个点之间的直线距离。

在视频分析中,你可能需要比较连续视频帧中的对象位置,以确定它们是否为同一个对象,或者评估对象的运动速度。通过计算连续帧中对象位置的欧几里得距离,可以对对象的运动进行量化分析。如果距离很小,这可能表明对象几乎没有移动;如果距离较大,这可能表明对象在两帧之间有显著的移动。这种方法有助于过滤掉静止的对象(如停放的车辆),只关注移动的对象。

首先,使用numpy库初始化一个热力图,该图是一个三维矩阵,其所有元素初始值都为零。这个矩阵具有三个“层”,分别对应RGB颜色通道。

import numpy as np

# 初始化热力图,尺寸与视频帧的高和宽相匹配,具有三个颜色通道
heatmap = np.zeros((int(cap.get(4)), int(cap.get(3)), 3), dtype=np.float32)

接下来,进入一个while循环,该循环将持续运行,直到视频处理完毕。

while cap.isOpened():
    success, frame = cap.read()
    if not success:
        break  # 如果无法读取帧,则退出循环

对于成功读取的每一帧,我们利用YOLO模型进行对象检测和跟踪。这里使用了跟踪和持久性算法,这对于处理视频帧序列非常有效。由于本例专注于车辆交通记录,我们只定义了两类对象。

if success:
    # 利用YOLO模型对帧进行对象检测和跟踪
    results = model.track(frame, persist=True, classes=2)

对于每一次有效的检测,更新热力图,记录对象的边界框坐标。

# 假设results['boxes']和results['track_ids']包含了检测结果的边界框和跟踪ID
for box, track_id in zip(results['boxes'], results['track_ids']):
    x_center, y_center, width, height = box
    current_position = (float(x_center), float(y_center))

使用calculate_distance函数来检查对象是否在移动,并根据移动的距离更新热力图。

last_position = last_positions.get(track_id)
if last_position and calculate_distance(last_position, current_position) > 5:
    # 如果对象移动的距离超过最小值,则在热力图上进行记录
    heatmap[top_left_y:bottom_right_y, top_left_x:bottom_right_x] += 1
    # 更新对象的最后位置记录
    last_positions[track_id] = current_position

为了提升视觉效果,对热力图应用高斯模糊滤镜。

# 对热力图应用高斯模糊,以增强视觉效果
heatmap_blurred = cv2.GaussianBlur(heatmap, (15, 15), 0)

随后,对热力图进行归一化处理,并应用颜色映射,以便在原始视频帧上进行叠加。

# 归一化热力图并应用颜色映射,以便在视频帧上叠加
heatmap_norm = cv2.normalize(heatmap_blurred, None, 0, 255, cv2.NORM_MINMAX, dtype=cv2.CV_8U)
heatmap_color = cv2.applyColorMap(heatmap_norm, cv2.COLORMAP_JET)

最后,在while循环中,添加了一个退出键的检查,以便用户可以通过按键退出程序。视频处理完成后,释放视频捕获对象,并关闭所有OpenCV创建的窗口。

# 添加退出键检查,允许用户通过按键退出程序
if cv2.waitKey(1) & 0xFF == ord("q"):
    break

# 视频处理完成后,释放资源并关闭窗口
cap.release()
cv2.destroyAllWindows()

通过上述步骤,能够创建一个动态的热力图,它不仅能够检测和跟踪视频中的对象,还能直观地展示对象的移动情况。

整体代码实现如下:

from collections import defaultdict
import cv2
import numpy as np
from ultralytics import YOLO

def calculate_distance(p1, p2):
    return np.sqrt((p1[0] - p2[0]) ** 2 + (p1[1] - p2[1]) ** 2)

def create_history(input_video,output_video,model_path):
    model = YOLO(model_path)
    cap = cv2.VideoCapture(input_video)
    track_history = defaultdict(lambda: [])
    last_positions = {}

    heatmap = np.zeros((int(cap.get(4)), int(cap.get(3)), 3), dtype=np.float32)

    fps = int(cap.get(5))
    videoWriter = None

    while cap.isOpened():
        success, frame = cap.read()
        if not success:
            break

        results = model.track(frame, persist=True, classes=2)

        boxes = results[0].boxes.xywh.cpu()
        track_ids = results[0].boxes.id.int().cpu().tolist()

        for box, track_id in zip(boxes, track_ids):
            x_center, y_center, width, height = box
            current_position = (float(x_center), float(y_center))

            top_left_x = int(x_center - width / 2)
            top_left_y = int(y_center - height / 2)
            bottom_right_x = int(x_center + width / 2)
            bottom_right_y = int(y_center + height / 2)

            top_left_x = max(0, top_left_x)
            top_left_y = max(0, top_left_y)
            bottom_right_x = min(heatmap.shape[1], bottom_right_x)
            bottom_right_y = min(heatmap.shape[0], bottom_right_y)

            track = track_history[track_id]
            track.append(current_position)
            if len(track) > 1200:
                track.pop(0)

            last_position = last_positions.get(track_id)
            if last_position and calculate_distance(last_position, current_position) > 5:
                heatmap[top_left_y:bottom_right_y, top_left_x:bottom_right_x] += 1

            last_positions[track_id] = current_position

            heatmap_blurred = cv2.GaussianBlur(heatmap, (15, 15), 0)

            heatmap_norm = cv2.normalize(heatmap_blurred, None, 0, 255, cv2.NORM_MINMAX, dtype=cv2.CV_8U)
            heatmap_color = cv2.applyColorMap(heatmap_norm, cv2.COLORMAP_JET)

            alpha = 0.7
            cv_dst = cv2.addWeighted(frame, 1 - alpha, heatmap_color, alpha, 0)

            cv_resize = cv2.resize(cv_dst,(640,360))
        if videoWriter is None:
            fourcc = cv2.VideoWriter_fourcc('m', 'p', '4', 'v')
            videoWriter = cv2.VideoWriter(output_video, fourcc, fps, (cv_resize.shape[1], cv_resize.shape[0]))

        videoWriter.write(cv_resize)
        cv2.imshow("Traffic Heatmap",cv_resize)

        if cv2.waitKey(1) & 0xFF == ord("q"):
            break

    cap.release()
    cv2.destroyAllWindows()

if __name__ == '__main__':
    model_path = "yolov8s.pt"
    create_history('11.mp4','21.mp4',model_path)

实现效果:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1608736.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【HC32L110】华大低功耗单片机启动文件详解

本文主要记录华大低功耗单片机 HC32L110 的 汇编启动过程,包括startup_hc32l110启动文件详细注释 目录 1.启动文件的作用2.堆栈定义2.1 栈2.2堆 3.向量表4.复位程序5.中断服务程序6.堆栈初始化启动过程详解7.1从0地址开始7.2在Reset_Handler中干了啥? 8.…

ContextMenuStrip内容菜单源对象赋值学习笔记(含源码)

一、前言 MetroTileItem属于第三方控件,无法定义ContextMenuStrip属性 想实现某子项点击菜单时,与源控件(按钮metroTileItem)的某值对应,用于动态控制按钮的状态或方法 1.1 效果 二、实现方法 2.1 方法1 (代码,说明见注释) private void metroTileItem_MouseDown(o…

python_django中小学家校互动系统vue_flask家校联系

实现了一个完整的家校互动系统,其中主要有作业信息模块、学校管理员模块、学生学籍模块、学生成绩模块、学科模块、系统新闻模块、系统公告模块、校内新闻模块、校内公告模块、用户表模块、token表模块、关于我们模块、收藏表模块、年级模块、家长模块、教师模块、互…

openlayers学习(一)

首先感谢大佬们写的文章,博客链接已在文章最后贴出,在接下来的内容中,我将会引用其中的一些定义结论。 之前文章写过一个Arcgis api for js的小demo,openlayers项目代码就继续在写这个小demo框架上。 openlayers官网 初始化地图…

Flink学习(六)-容错处理

前言 Flink 是通过状态快照实现容错处理 一、State Backends 由 Flink 管理的 keyed state 是一种分片的键/值存储,每个 keyed state 的工作副本都保存在负责该键的 taskmanager 本地中。 一种基于 RocksDB 内嵌 key/value 存储将其工作状态保存在磁盘上&#x…

聚观早报 | 华为Pura70系列先锋计划;月之暗面升级Kimi

聚观早报每日整理最值得关注的行业重点事件,帮助大家及时了解最新行业动态,每日读报,就读聚观365资讯简报。 整理丨Cutie 4月19日消息 华为Pura70系列先锋计划 月之暗面升级Kimi OPPO Find X7将推白色版本 波士顿动力推出人形机器人 v…

sql-labs(1-8关)

mysql数据结构 在练习靶场前我们需要了解以下mysql数据库结构,mysql数据库5.0以上版本有一个自带的数据库叫做information_schema,该数据库下面有两个表一个是tables和columns。tables这个表的table_name字段下面是所有数据库存在的表名。table_schema字段下是所有…

面试: Hashtable vs ConcurrentHashMap

一、Hashtable和ConcurrentHashMap的不同和相同点 Hashtable 与 ConcurrentHashMap 都是线程安全的Map 集合。Hashtable 并发度低,整个Hashtable对应一把锁,同一时刻,只能有一个线程操作它。1.8之前ConcurrentHashMap使用了Segment 数组&…

爱普生发布一款16位MCU产品用于大电流LED驱动

精工爱普生发布一款内置Flash存储器的16位微控制器S1C17M13 该新品可以提供最大56mA的驱动电流用于驱动发光二极管(LED) 以往爱普生的微处理器大多继承了液晶驱动器电路,但近来随着工业自动化和家用设备使用7段LED显示的数量大幅增加,爱普生也推出了对应…

pdf加水印怎么加?自己原创的PDF资料分享到网络上需要采取一些版权保护的措施,添加水印就是个不错的选择

一,水印的基本概念 水印通常是一种用于标识文件来源、版权信息或防止非法复制的标记。它可以是文字、图形或图像等形式,以半透明或半淡化的方式嵌入到文件中,既不影响文件的正常阅读,又能起到标识和保护的作用。 二,…

如何查看Debian Linux的内核版本

2024年4月19日,周五上午 uname -r

测试数据整理--chatgpt 构造sql语句导出数据库数据

在测试过程中,我们有时候需要准备一些测试数据,若从系统中直接导出Excel数据,数据往往庞大且需要整合,不好整理,于是我们直接去数据库中查询一些表,数据整合后直接导出结果会更方便。 我们今天就 用 chatg…

【EdgeBox-8120AI-TX2】Ubuntu18.04 + ROS_ Melodic + 星秒PAVO2单线激光 雷达评测

大家好,我是虎哥,好久不见,最近这断时间出现了一点变故,开始自己创业,很多事需要忙,所以停更了大约大半年,最近一切已经理顺,所以我还是抽空继续我之前的FLAG,CSDN突破十…

矩阵混乱度(熵值)代码计算

1、先回顾下熵值的数据公式: 2、jax.numpy代码 注意的点:熵值计算的输入的必须是归一化的正值 import jax.numpy as jnp import jax def _entroy(probs):log_probs jnp.log2(jnp.maximum(1.0e-30, probs))mean_sum_plogp jnp.mean(- jnp.sum(log_pro…

OpenHarmony鸿蒙南向开发案例:【智能窗户通风设备】

样例简介 本文档介绍了安全厨房案例中的相关智能窗户通风设备,本安全厨房案例利用轻量级软总线能力,将两块欧智通V200Z-R/BES2600开发板模拟的智能窗户通风设备和燃气告警设备组合成。当燃气数值告警时,无需其它操作,直接通知软总…

java实现chatGPT SDK

搭建一个 ChatGPT-SDK 组件工程,专门用于封装对 OpenAI 接口的使用。由于 OpenAI 接口本身较多,并有各类配置的设置,所以开发一个共用的 SDK 组件,更合适我们在各类工程中扩展使用 整个流程为:以会话模型为出口&#x…

spring boot后端开发基础

spring boot后端开发基础 Spring Boot一、开发步骤二、Web分析三、跨域问题四、HTTP协议五、Web服务器六、响应前端请求七、springboot常用注解创建一个简单的RESTful API服务层和数据访问层配置类和Bean定义响应体和路径变量 Spring Boot 一、开发步骤 创建项目 添加依赖 项…

设计模式代码实战-责任链模式

1、问题描述 小明所在的公司请假需要在OA系统上发布申请,整个请求流程包括多个处理者,每个处理者负责处理不同范围的请假天数,如果一个处理者不能处理请求,就会将请求传递给下一个处理者,请你实现责任链模式&#xff…

javax.net.ssl.SSLHandshakeException: No appropriate protocol

cd /Library/Java/JavaVirtualMachines/jdk-1.8.jdk/Contents/home/jre/lib/security sudo vi java.security 删掉下面的三个配置,然后重启应用即可

对EKS(AWS云k8s)启用AMP(AWS云Prometheus)监控+AMG(AWS云 grafana)

问题 需要在针对已有的EKS k8s集群启用Prometheus指标监控。而且,这里使用AMP即AWS云的Prometheus托管服务。好像这个服务,只有AWS国际云才有,AWS中国云没得这个托管服务。下面,我们就来尝试在已有的EKS集群上面启用AMP监控。 步…