看图找LOGO,基于YOLOv5系列【n/m/x】参数模型开发构建生活场景下的商品商标LOGO检测识别系统

news2025/1/16 0:26:42

日常生活中,我们会看到眼花缭乱的各种各样的产品logo,但是往往却未必能认全,正因为有这个想法,这里我花费了过去近两周的时间采集和构建了包含50种商品商标logo的数据集来开发构建对应的检测识别系统,在前文中我们已经有了对应的实践了,感兴趣的话可以自行移步阅读即可:

《看图找LOGO,基于YOLOv8全系列【n/s/m/l/x】参数模型开发构建生活场景下的商品商标LOGO检测识别系统》

首先看下实例效果:

接下来看下对应的数据集情况:

本文是选择的是YOLOv5算法模型来完成本文项目的开发构建。相较于前两代的算法模型,YOLOv5可谓是集大成者,达到了SOTA的水平,下面简单对v3-v5系列模型的演变进行简单介绍总结方便对比分析学习:
【YOLOv3】
YOLOv3(You Only Look Once version 3)是一种基于深度学习的快速目标检测算法,由Joseph Redmon等人于2018年提出。它的核心技术原理和亮点如下:
技术原理:
YOLOv3采用单个神经网络模型来完成目标检测任务。与传统的目标检测方法不同,YOLOv3将目标检测问题转化为一个回归问题,通过卷积神经网络输出图像中存在的目标的边界框坐标和类别概率。
YOLOv3使用Darknet-53作为骨干网络,用来提取图像特征。检测头(detection head)负责将提取的特征映射到目标边界框和类别预测。
亮点:
YOLOv3在保持较高的检测精度的同时,能够实现非常快的检测速度。相较于一些基于候选区域的目标检测算法(如Faster R-CNN、SSD等),YOLOv3具有更高的实时性能。
YOLOv3对小目标和密集目标的检测效果较好,同时在大目标的检测精度上也有不错的表现。
YOLOv3具有较好的通用性和适应性,适用于各种目标检测任务,包括车辆检测、行人检测等。
【YOLOv4】
YOLOv4是一种实时目标检测模型,它在速度和准确度上都有显著的提高。相比于其前一代模型YOLOv3,YOLOv4在保持较高的检测精度的同时,还提高了检测速度。这主要得益于其采用的CSPDarknet53网络结构,主要有三个方面的优点:增强CNN的学习能力,使得在轻量化的同时保持准确性;降低计算瓶颈;降低内存成本。YOLOv4的目标检测策略采用的是“分而治之”的策略,将一张图片平均分成7×7个网格,每个网格分别负责预测中心点落在该网格内的目标。这种方法不需要额外再设计一个区域提议网络(RPN),从而减少了训练的负担。然而,尽管YOLOv4在许多方面都表现出色,但它仍然存在一些不足。例如,小目标检测效果较差。此外,当需要在资源受限的设备上部署像YOLOv4这样的大模型时,模型压缩是研究人员重新调整较大模型所需资源消耗的有用工具。
优点:
速度:YOLOv4 保持了 YOLO 算法一贯的实时性,能够在检测速度和精度之间实现良好的平衡。
精度:YOLOv4 采用了 CSPDarknet 和 PANet 两种先进的技术,提高了检测精度,特别是在检测小型物体方面有显著提升。
通用性:YOLOv4 适用于多种任务,如行人检测、车辆检测、人脸检测等,具有较高的通用性。
模块化设计:YOLOv4 中的组件可以方便地更换和扩展,便于进一步优化和适应不同场景。
缺点:
内存占用:YOLOv4 模型参数较多,因此需要较大的内存来存储和运行模型,这对于部分硬件设备来说可能是一个限制因素。
训练成本:YOLOv4 模型需要大量的训练数据和计算资源才能达到理想的性能,这可能导致训练成本较高。
精确度与速度的权衡:虽然 YOLOv4 在速度和精度之间取得了较好的平衡,但在极端情况下,例如检测高速移动的物体或复杂背景下的物体时,性能可能会受到影响。
误检和漏检:由于 YOLOv4 采用单一网络对整个图像进行预测,可能会导致一些误检和漏检现象。

【YOLOv5】
YOLOv5是一种快速、准确的目标检测模型,由Glen Darby于2020年提出。相较于前两代模型,YOLOv5集成了众多的tricks达到了性能的SOTA:
技术原理:
YOLOv5同样采用单个神经网络模型来完成目标检测任务,但采用了新的神经网络架构,融合了领先的轻量级模型设计理念。YOLOv5使用较小的骨干网络和新的检测头设计,以实现更快的推断速度,并在不降低精度的前提下提高目标检测的准确性。
亮点:
YOLOv5在模型结构上进行了改进,引入了更先进的轻量级网络架构,因此在速度和精度上都有所提升。
YOLOv5支持更灵活的模型大小和预训练选项,可以根据任务需求选择不同大小的模型,同时提供丰富的数据增强扩展、模型集成等方法来提高检测精度。YOLOv5通过使用更简洁的代码实现,提高了模型的易用性和可扩展性。

训练数据配置文件如下:

# Dataset
path: ./dataset
train:
  - images/train
val:
  - images/test
test:
  - images/test


# Classes
names:
  0: L0
  1: L1
  2: L2
  3: L3
  4: L4
  5: L5
  6: L6
  7: L7
  8: L8
  9: L9
  10: L10
  11: L11
  12: L12
  13: L13
  14: L14
  15: L15
  16: L16
  17: L17
  18: L18
  19: L19
  20: L20
  21: L21
  22: L22
  23: L23
  24: L24
  25: L25
  26: L26
  27: L27
  28: L28
  29: L29
  30: L30
  31: L31
  32: L32
  33: L33
  34: L34
  35: L35
  36: L36
  37: L37
  38: L38
  39: L39
  40: L40
  41: L41
  42: L42
  43: L43
  44: L44
  45: L45
  46: L46
  47: L47
  48: L48
  49: L49

实验截止目前,本文将YOLOv5系列三款不同参数量级的模型n、m和x进行了开发评测,从模型选择上不难看出我们是间隔一个来进行选择的,接下来看下模型详情:

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv5 object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/yolov5
 
# Parameters
nc: 50  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov5n.yaml' will call yolov5.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]
  m: [0.67, 0.75, 1024]
  x: [1.33, 1.25, 1024]
 
# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]
 
# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13
 
   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)
 
   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)
 
   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)
 
   [[17, 20, 23], 1, Detect, [nc]],  # Detect(P3, P4, P5)
  ]

在实验训练开发阶段,所有的模型均保持完全相同的参数设置,等待漫长的训练完成后,来整体进行评测对比分析。

【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能.F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。

【loss曲线】

【mAP0.5】
mAP0.5,也被称为mAP@0.5或AP50,指的是当Intersection over Union(IoU)阈值为0.5时的平均精度(mean Average Precision)。IoU是一个用于衡量预测边界框与真实边界框之间重叠程度的指标,其值范围在0到1之间。当IoU值为0.5时,意味着预测框与真实框至少有50%的重叠部分。
在计算mAP0.5时,首先会为每个类别计算所有图片的AP(Average Precision),然后将所有类别的AP值求平均,得到mAP0.5。AP是Precision-Recall Curve曲线下面的面积,这个面积越大,说明AP的值越大,类别的检测精度就越高。
mAP0.5主要关注模型在IoU阈值为0.5时的性能,当mAP0.5的值很高时,说明算法能够准确检测到物体的位置,并且将其与真实标注框的IoU值超过了阈值0.5。

【mAP0.5:0.95】
mAP0.5:0.95,也被称为mAP@[0.5:0.95]或AP@[0.5:0.95],表示在IoU阈值从0.5到0.95变化时,取各个阈值对应的mAP的平均值。具体来说,它会在IoU阈值从0.5开始,以0.05为步长,逐步增加到0.95,并在每个阈值下计算mAP,然后将这些mAP值求平均。
这个指标考虑了多个IoU阈值下的平均精度,从而更全面、更准确地评估模型性能。当mAP0.5:0.95的值很高时,说明算法在不同阈值下的检测结果均非常准确,覆盖面广,可以适应不同的场景和应用需求。
对于一些需求比较高的场合,比如安全监控等领域,需要保证高的准确率和召回率,这时mAP0.5:0.95可能更适合作为模型的评价标准。
综上所述,mAP0.5和mAP0.5:0.95都是用于评估目标检测模型性能的重要指标,但它们的关注点有所不同。mAP0.5主要关注模型在IoU阈值为0.5时的性能,而mAP0.5:0.95则考虑了多个IoU阈值下的平均精度,从而更全面、更准确地评估模型性能。

【Precision曲线】
精确率曲线(Precision-Recall Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。

【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。

从我们间隔分级挑选的三款模型来看,n系列的模型效果最差,m和x系列的模型效果则较为相近,综合考虑参数量计算量的话我们选择了m系列的模型作为线上推理模型。

接下来看下m系列模型的结果详情:

【离线推理实例】

【热力图可视化】

【Batch实例】

【类别数据分布可视化】

【混淆矩阵】

【F1曲线】

【Precision曲线】

【PR曲线】

【Recall曲线】

【整体训练可视化】

可以看到YOLOv5模型的效果还是非常不错的了,感兴趣的话也可以动手实践下!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1603386.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Python学习教程(Python学习路线+Python学习视频):Python数据结构

数据结构引言: 数据结构是组织数据的方式,以便能够更好的存储和获取数据。数据结构定义数据之间的关系和对这些数据的操作方式。数据结构屏蔽了数据存储和操作的细节,让程序员能更好的处理业务逻辑,同时拥有快速的数据存储和获取方…

游戏、app抓包

文章目录 协议app抓包游戏抓包 协议 在抓包之前,首先我们要对每个程序使用什么协议有个大致的了解,比如网页这种就是走的http协议。 在一些app中我们通过发送一个请求,然后服务器接受,响应,返回一个数据包&#xff0c…

VTK —— 二、教程二 - 利用vtk观察者检测多边形圆锥水平旋转360°过程(附完整源码)

代码效果 本代码编译运行均在如下链接文章生成的库执行成功,若无VTK库则请先参考如下链接编译vtk源码: VTK —— 一、Windows10下编译VTK源码,并用Vs2017代码测试(附编译流程、附编译好的库、vtk测试源码) 教程描述 本…

使用clickhouse-backup迁移数据

作者:俊达 1 说明 上一篇文章中,我们介绍了clickhouse-backup工具。除了备份恢复,我们也可以使用该工具来迁移数据。 这篇文章中,我们提供一个使用clickhouse-backup做集群迁移的方案。 2 前置条件 1、源端和目标端网络联通&a…

vscode 配置go环境

https://www.zhihu.com/question/486786946/answer/2723663432 注意一定要安装最新版,否则不容易debug //main.go package main //说明hello.go这个文件在main这个包中import "fmt" //导入内置包,可以使用其中函数等func main() {fmt.Println("Hello…

微信小程序的常用API ①

前言:什么是微信小程序的API? (1)微信小程序的API是由宿主环境提供的。通俗来说API是一种接口函数,把函数封装起来给开发者使用,这样好多功能都无需开发者去实现,直接调用即可。 (…

真有立即做出40+BI零售数据分析报表的方案?

有,奥威BI零售数据分析方案是一套标准化的BI方案,预设零售数据分析模型和BI报表,点击应用后,将自动从系统中取数,并根据方案的预设计算分析指标、分析数据,并生成让人快速理解数据情况的BI数据可视化报表。…

javaweb http

1、http简介 HTTP 超文本传输协议(HTTP-Hyper Text transfer protocol),是一个属于应用层的面向对象的协议,由于其简捷、快速的方式,适用于分布式超媒体信息系统。它于1990年提出,经过十几年的使用与发展&…

npm ERR! code CERT_HAS_EXPIRED (创建vue过程)

npm ERR! code CERT_HAS_EXPIRED (创建vue过程) 起因:卸载 npm uninstall -g vue-cli时候发现报这个错误。 当我们创建vue之前,使用npm更新或者安装啥的时,出现此类提示,则表明,用来验证和网络加…

使用GAN做图像超分——SRGAN,ESRGAN

在GAN出现之前,使用的更多是MSE,PSNR,SSIM来衡量图像相似度,同时也使用他们作为损失函数。 但是这些引以为傲的指标,有时候也不是那么靠谱: MSE对于大的误差更敏感,所以结果就是会倾向于收敛到期望附近&am…

《Kubernetes部署篇:基于Kylin V10+ARM架构CPU+外部etcd使用containerd部署K8S 1.26.15容器版集群(一主多从)》

总结:整理不易,如果对你有帮助,可否点赞关注一下? 更多详细内容请参考:企业级K8s集群运维实战 1、在当前实验环境中安装K8S1.25.14版本,出现了一个问题,就是在pod中访问百度网站,大…

使用嘉立创EDA打开JSON格式的PCB及原理图

一、将PCB和原理图放同一文件夹 并打包成.zip文件 二、打开嘉立创EDA并导入.zip文件 文件 -> 导入 -> 嘉立创EDA标准版/专业版 三、选择.zip文件并选择 “导入文件并提取库” 四、自定义工程路径 完成导入并转换为.eprj文件 五、视频教学 bilibili_使用立创EDA打开JSO…

Ansible 提示 sshpass 错误

错误的信息为: AILED! > {"msg": "to use the ssh connection type with passwords or pkcs11_provider, you must install the sshpass program"}问题和原因 这是在运行 ansible 的服务器需要安装 sshpass 组件。 可以直接运行&#xff1…

Xamarin.Android中“ADB0020: Android ABI 不匹配。你正将应用支持的“armeabi-v7a;arm64-v8a”异常处理

这里写自定义目录标题 1、问题2、解决 1、问题 在Xamarin.Android中出现ADB0020: Android ABI 不匹配。你正将应用支持的“armeabi-v7a;arm64-v8a”ABI 部署到 ABI“x86_64;x86”的不兼容设备。应创建匹配其中一个应用 ABI 的仿真程序,或将“x86_64”添加到应用生成…

web自动化系列-selenium 的鼠标操作(十)

对于鼠标操作 ,我们可以通过click()方法进行点击操作 ,但是有些特殊场景下的操作 ,click()是无法完成的 ,比如 :我想进行鼠标悬停 、想进行鼠标拖拽 ,怎么办 ? 这个时候你用click()是无法完成的…

论文解读:(CoOp)Learning to Prompt for Vision-Language Models

文章汇总 存在的问题 虽然训练类别通常具有文本形式,例如“金鱼”或“卫生纸”,但它们将被转换为离散标签,只是为了简化交叉熵损失的计算,从而使文本中的语义封装在很大程度上未被利用。这样的学习范式将视觉识别系统限制在闭集…

【C++题解】1565. 成绩(score)

问题:1565. 成绩(score) 类型:基本运算、小数运算 题目描述: 牛牛最近学习了 C 入门课程,这门课程的总成绩计算方法是: 总成绩作业成绩 20% 小测成绩 30% 期末考试成绩 50%。 牛牛想知道&am…

CSS简介与CSS选择器

目录 CSS简介 CSS语法规范 HTML引入CSS的方式 行内样式表 内部样式表 外部样式表 CSS选择器 CSS基础选择器 标签选择器 类选择器 单类名选择器 多类名选择器 id选择器 id选择器的使用 id选择器和类选择器的区别 通配符选择器 基础选择器总结 CSS简介 CSS 是层…

无风扇嵌入式车载电脑在矿山车辆行业应用

矿山车辆行业应用 背景介绍 现代的采矿业面临许多的挑战,其中最重要的就是安全性的问题,无论在矿井下或地面上的工作,都必须确保员工的安全保障。因此,先进的矿车必须整合专用的车载电脑,在极其恶劣的采矿环境中稳定运…

Python 数据结构和算法实用指南(三)

原文:zh.annas-archive.org/md5/66ae3d5970b9b38c5ad770b42fec806d 译者:飞龙 协议:CC BY-NC-SA 4.0 第七章:哈希和符号表 我们之前已经看过数组和列表,其中项目按顺序存储并通过索引号访问。索引号对计算机来说很有效…