【c++】stack和queue使用 stack和queue模拟实现

news2024/12/28 19:54:25

主页:醋溜马桶圈-CSDN博客

专栏:c++_醋溜马桶圈的博客-CSDN博客

gitee:mnxcc (mnxcc) - Gitee.com

目录

1. stack的介绍和使用

1.1 stack的介绍

1.2 stack的使用

1.3 stack的模拟实现

2. queue的介绍和使用

2.1 queue的介绍

2.2 queue的使用

2.3 queue的模拟实现

3. priority_queue的介绍和使用

3.1 priority_queue的介绍

3.2 priority_queue的使用

3.3 priority_queue的模拟实现

4. 容器适配器

4.1 什么是适配器

4.2 STL标准库中stack和queue的底层结构

4.3 deque的简单介绍(了解)

4.3.1 deque的原理介绍

4.3.2 deque的缺陷

4.4 为什么选择deque作为stack和queue的底层默认容器

4.5 STL标准库中对于stack和queue的模拟实现 

4.5.1 stack的模拟实现

4.5.2 queue的模拟实现

4.5.3 测试代码


 

1. stack的介绍和使用

1.1 stack的介绍

stack的文档介绍:https://cplusplus.com/reference/stack/stack/?kw=stack

  1. stack是一种容器适配器,专门用在具有后进先出操作的上下文环境中,其删除只能从容器的一端进行元素的插入与提取操作
  2. stack是作为容器适配器被实现的,容器适配器即是对特定类封装作为其底层的容器,并提供一组特定的成员函数来访问其元素,将特定类作为其底层的,元素特定容器的尾部(即栈顶)被压入和弹出
  3. stack的底层容器可以是任何标准的容器类模板或者一些其他特定的容器类,这些容器类应该支持以下操作:
    empty:判空操作
    back:获取尾部元素操作
    push_back:尾部插入元素操作
    pop_back:尾部删除元素操作
  4. 标准容器vector、deque、list均符合这些需求,默认情况下,如果没有为stack指定特定的底层容器,默认情况下使用deque

1.2 stack的使用

1.3 stack的模拟实现

从栈的接口中可以看出,栈实际是一种特殊的vector,因此使用vector完全可以模拟实现stack

#include<vector>
namespace name
{
	template<class T>
	class stack
	{
	public:
		stack() {}
		void push(const T& x) { _c.push_back(x); }
		void pop() { _c.pop_back(); }
		T& top() { return _c.back(); }
		const T& top()const { return _c.back(); }
		size_t size()const { return _c.size(); }
		bool empty()const { return _c.empty(); }
	private:
		std::vector<T> _c;
	};
}

2. queue的介绍和使用

2.1 queue的介绍

https://cplusplus.com/reference/queue/queue/queue的文档介绍:https://cplusplus.com/reference/queue/queue/

  1. 队列是一种容器适配器,专门用于在FIFO上下文(先进先出)中操作,其中从容器一端插入元素,另一端提取元素
  2. 队列作为容器适配器实现,容器适配器即将特定容器类封装作为其底层容器类,queue提供一组特定的成员函数来访问其元素。元素从队尾入队列,从队头出队列
  3. 底层容器可以是标准容器类模板之一,也可以是其他专门设计的容器类。该底层容器应至少支持以下操作:
    empty:检测队列是否为空
    size:返回队列中有效元素的个数
    front:返回队头元素的引用
    back:返回队尾元素的引用
    push_back:在队列尾部入队列
    pop_front:在队列头部出队列
  4. 标准容器类deque和list满足了这些要求。默认情况下,如果没有为queue实例化指定容器类,则使用标准容器deque

2.2 queue的使用

2.3 queue的模拟实现

因为queue的接口中存在头删和尾插,因此使用vector来封装效率太低,故可以借助list来模拟实现queue,具体如下:

#include <list>
namespace name
{
	template<class T>
	class queue
	{
	public:
		queue() {}
		void push(const T& x) { _c.push_back(x); }
		void pop() { _c.pop_front(); }
		T& back() { return _c.back(); }
		const T& back()const { return _c.back(); }
		T& front() { return _c.front(); }
		const T& front()const { return _c.front(); }
		size_t size()const { return _c.size(); }
		bool empty()const { return _c.empty(); }
	private:
		std::list<T> _c;
	};
}

3. priority_queue的介绍和使用

3.1 priority_queue的介绍

priority_queue文档介绍:https://cplusplus.com/reference/queue/priority_queue/

  1. 优先队列是一种容器适配器,根据严格的弱排序标准,它的第一个元素总是它所包含的元素中最大的
  2. 此上下文类似于堆,在堆中可以随时插入元素,并且只能检索最大堆元素(优先队列中位于顶部的元素)
  3. 优先队列被实现为容器适配器,容器适配器即将特定容器类封装作为其底层容器类,queue提供一组特定的成员函数来访问其元素。元素从特定容器的“尾部”弹出,其称为优先队列的顶部
  4. 底层容器可以是任何标准容器类模板,也可以是其他特定设计的容器类。容器应该可以通过随机访问迭代器访问,并支持以下操作:
    empty():检测容器是否为空
    size():返回容器中有效元素个数
    front():返回容器中第一个元素的引用
    push_back():在容器尾部插入元素
    pop_back():删除容器尾部元素
  5. 标准容器类vector和deque满足这些需求。默认情况下,如果没有为特定的priority_queue类实例化指定容器类,则使用vector
  6. 需要支持随机访问迭代器,以便始终在内部保持堆结构。容器适配器通过在需要时自动调用算法函数make_heap、push_heap和pop_heap来自动完成此操作

3.2 priority_queue的使用

优先级队列默认使用vector作为其底层存储数据的容器,在vector上又使用了堆算法将vector中元素构造成堆的结构,因此priority_queue就是堆,所有需要用到堆的位置,都可以考虑使用priority_queue

注意:默认情况下priority_queue是大堆

  1. 默认情况下,priority_queue是大堆
    #include <vector>
    #include <queue>
    #include <functional> // greater算法的头文件
    void TestPriorityQueue()
    {
    	// 默认情况下,创建的是大堆,其底层按照小于号比较
    	vector<int> v{ 3,2,7,6,0,4,1,9,8,5 };
    	priority_queue<int> q1;
    	for (auto& e : v)
    		q1.push(e);
    	cout << q1.top() << endl;
    	// 如果要创建小堆,将第三个模板参数换成greater比较方式
    	priority_queue<int, vector<int>, greater<int>> q2(v.begin(), v.end());
    	cout << q2.top() << endl;
    }
  2. 如果在priority_queue中放自定义类型的数据,用户需要在自定义类型中提供> 或者< 的重载
    class Date
    {
    public:
    	Date(int year = 1900, int month = 1, int day = 1)
    		: _year(year)
    		, _month(month)
    		, _day(day)
    	{}
    	bool operator<(const Date& d)const
    	{
    		return (_year < d._year) ||
    			(_year == d._year && _month < d._month) ||
    			(_year == d._year && _month == d._month && _day < d._day);
    	}
    	bool operator>(const Date& d)const
    	{
    		return (_year > d._year) ||
    			(_year == d._year && _month > d._month) ||
    			(_year == d._year && _month == d._month && _day > d._day);
    	}
    	friend ostream& operator<<(ostream& _cout, const Date& d)
    	{
    		_cout << d._year << "-" << d._month << "-" << d._day;
    		return _cout;
    	}
    private:
    	int _year;
    	int _month;
    	int _day;
    };
    void TestPriorityQueue()
    {
    	// 大堆,需要用户在自定义类型中提供<的重载
    	priority_queue<Date> q1;
    	q1.push(Date(2018, 10, 29));
    	q1.push(Date(2018, 10, 28));
    	q1.push(Date(2018, 10, 30));
    	cout << q1.top() << endl;
    	// 如果要创建小堆,需要用户提供>的重载
    	priority_queue<Date, vector<Date>, greater<Date>> q2;
    	q2.push(Date(2018, 10, 29));
    	q2.push(Date(2018, 10, 28));
    	q2.push(Date(2018, 10, 30));
    	cout << q2.top() << endl;
    }

3.3 priority_queue的模拟实现

#pragma once

#include <iostream>
using namespace std;

#include <vector>
// priority_queue--->堆
namespace bite
{
	template<class T>
	struct less
	{
		bool operator()(const T& left, const T& right)
		{
			return left < right;
		}
	};

	template<class T>
	struct greater
	{
		bool operator()(const T& left, const T& right)
		{
			return left > right;
		}
	};

	template<class T, class Container = std::vector<T>, class Compare = less<T>>
	class priority_queue
	{
	public:
		// 创造空的优先级队列
		priority_queue() : c() {}

		template<class Iterator>
		priority_queue(Iterator first, Iterator last)
			: c(first, last)
		{
			// 将c中的元素调整成堆的结构
			int count = c.size();
			int root = ((count - 2) >> 1);
			for (; root >= 0; root--)
				AdjustDown(root);
		}

		void push(const T& data)
		{
			c.push_back(data);
			AdjustUP(c.size() - 1);
		}

		void pop()
		{
			if (empty())
				return;

			swap(c.front(), c.back());
			c.pop_back();
			AdjustDown(0);
		}

		size_t size()const
		{
			return c.size();
		}

		bool empty()const
		{
			return c.empty();
		}

		// 堆顶元素不允许修改,因为:堆顶元素修改可以会破坏堆的特性
		const T& top()const
		{
			return c.front();
		}
	private:
		// 向上调整
		void AdjustUP(int child)
		{
			int parent = ((child - 1) >> 1);
			while (child)
			{
				if (Compare()(c[parent], c[child]))
				{
					swap(c[child], c[parent]);
					child = parent;
					parent = ((child - 1) >> 1);
				}
				else
				{
					return;
				}
			}
		}

		// 向下调整
		void AdjustDown(int parent)
		{
			size_t child = parent * 2 + 1;
			while (child < c.size())
			{
				// 找以parent为根的较大的孩子
				if (child + 1 < c.size() && Compare()(c[child], c[child + 1]))
					child += 1;

				// 检测双亲是否满足情况
				if (Compare()(c[parent], c[child]))
				{
					swap(c[child], c[parent]);
					parent = child;
					child = parent * 2 + 1;
				}
				else
					return;
			}
		}
	private:
		Container c;
	};
}

void TestQueuePriority()
{
	bite::priority_queue<int> q1;
	q1.push(5);
	q1.push(1);
	q1.push(4);
	q1.push(2);
	q1.push(3);
	q1.push(6);
	cout << q1.top() << endl;

	q1.pop();
	q1.pop();
	cout << q1.top() << endl;

	vector<int> v{ 5,1,4,2,3,6 };
	bite::priority_queue<int, vector<int>, bite::greater<int>> q2(v.begin(), v.end());
	cout << q2.top() << endl;

	q2.pop();
	q2.pop();
	cout << q2.top() << endl;
}

4. 容器适配器

4.1 什么是适配器

适配器是一种设计模式(设计模式是一套被反复使用的、多数人知晓的、经过分类编目的、代码设计经验的总结),该种模式是将一个类的接口转换成客户希望的另外一个接口

4.2 STL标准库中stackqueue的底层结构

虽然stack和queue中也可以存放元素,但在STL中并没有将其划分在容器的行列,而是将其称为容器适配,这是因为stack和队列只是对其他容器的接口进行了包装,STL中stack和queue默认使用deque,比如:

4.3 deque的简单介绍(了解)

4.3.1 deque的原理介绍

deque(双端队列):是一种双开口的"连续"空间的数据结构,双开口的含义是:可以在头尾两端进行插入和删除操作,且时间复杂度为O(1),与vector比较,头插效率高,不需要搬移元素;与list比较,空间利用率比较高

deque并不是真正连续的空间,而是由一段段连续的小空间拼接而成的,实际deque类似于一个动态的二维数组,其底层结构如下图所示

双端队列底层是一段假象的连续空间,实际是分段连续的,为了维护其“整体连续”以及随机访问的假象,落在了deque的迭代器身上,因此deque的迭代器设计就比较复杂,如下图所示

那deque是如何借助其迭代器维护其假想连续的结构呢?

4.3.2 deque的缺陷

与vector比较,deque的优势是:头部插入和删除时,不需要搬移元素,效率特别高,而且在扩容时,也不需要搬移大量的元素,因此其效率是必vector高的

与list比较,其底层是连续空间,空间利用率比较高,不需要存储额外字段

但是,deque有一个致命缺陷:不适合遍历,因为在遍历时,deque的迭代器要频繁的去检测其是否移动到某段小空间的边界,导致效率低下,而序列式场景中,可能需要经常遍历,因此在实际中,需要线性结构时,大多数情况下优先考虑vector和list,deque的应用并不多,而目前能看到的一个应用就是,STL用其作为stack和queue的底层数据结构

4.4 为什么选择deque作为stackqueue的底层默认容器

stack是一种后进先出的特殊线性数据结构,因此只要具有push_back()和pop_back()操作的线性结构,都可以作为stack的底层容器,比如vector和list都可以;queue是先进先出的特殊线性数据结构,只要具有push_back和pop_front操作的线性结构,都可以作为queue的底层容器,比如list。但是STL中对stack和queue默认选择deque作为其底层容器,主要是因为:

  1. stack和queue不需要遍历(因此stack和queue没有迭代器),只需要在固定的一端或者两端进行操作
  2. 在stack中元素增长时,deque比vector的效率高(扩容时不需要搬移大量数据);queue中的元素增长时,deque不仅效率高,而且内存使用率高

结合了deque的优点,而完美的避开了其缺陷。

4.5 STL标准库中对于stackqueue的模拟实现 

4.5.1 stack的模拟实现

#pragma once
#include<vector>
#include<list>
#include<deque>
namespace dc
{
	//适配器模式
	//stack <int, vector<int>> st1;
	//stack <int,list<int>> st2;
	//template<class T,class Container=vector<int>>
	template<class T,class Container=deque<T>>
	class stack
	{
	public:
		void push(const T& x)
		{
			_con.push_back(x);
		}
		void pop()
		{
			_con.pop_back();
		}
		size_t size()
		{
			return _con.size();
		}
		bool empty()
		{
			return _con.empty();
		}
		const T& top()
		{
			return _con.back();
		}
	private:

		Container _con;
		//T* _a;
		//int _top;
		//int _capacity;
	};
}

4.5.2 queue的模拟实现

#pragma once
#include<vector>
#include<list>
#include<deque>
namespace dc
{
	//适配器模式
	//stack <int, vector<int>> st1;
	//stack <int,list<int>> st2;
	template<class T, class Container = deque<T>>
	class queue
	{
	public:
		void push(const T& x)
		{
			_con.push_back(x);
		}
		void pop()
		{
			_con.pop_front();
		}
		size_t size()
		{
			return _con.size();
		}
		bool empty()
		{
			return _con.empty();
		}
		const T& front()
		{
			return _con.front();
		}
		const T& back()
		{
			return _con.back();
		}
	private:

		Container _con;
		//T* _a;
		//int _top;
		//int _capacity;
	};
}

4.5.3 测试代码

#define _CRT_SECURE_NO_WARNINGS 
#include<iostream>
using namespace std;
//#include<stack>
#include "Stack.h"
#include "Queue.h"
#include <algorithm>
void test_stack1()
{
	//dc::stack <int, vector<int>> st;
	dc::stack <int> st;
	st.push(1);
	st.push(2);
	st.push(3);
	st.push(4);
	while (!st.empty())
	{
		cout << st.top() << " ";
		st.pop();
	}
	cout << endl;
}
void test_queue1()
{
	//dc::stack <int, vector<int>> st;
	dc::queue <int> q;
	q.push(1);
	q.push(2);
	q.push(3);
	q.push(4);
	while (!q.empty())
	{
		cout << q.front() << " ";
		q.pop();
	}
	cout << endl;
}

int main()
{
	//test_stack1();
	test_queue1();
	return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1602099.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Web端即时通讯必备技术:WebSocket快速入门

随着Web应用程序的不断发展&#xff0c;越来越多的应用需要实现实时交互和通信。然而&#xff0c;传统的HTTP协议只支持单向通信&#xff0c;即客户端向服务器发送请求并接收响应。为了解决这一限制&#xff0c;WebSocket技术应运而生。本文将为大家介绍即时通讯技术 WebSocket…

linux 挂载云盘 NT只能挂载2T,使用parted挂载超过2T云盘

一、删除原来挂载好的云盘和分区 1、查看挂载号的云盘 fdisk -l 发现我们有5千多G但是只挂载了2T&#xff0c;心里非常的慌张&#xff01;十分的不爽&#xff01; 好&#xff0c;我们把它干掉&#xff0c;重新分区&#xff01; 2、解除挂载 umount /homeE 没保存跳转到&…

Elasticsearch:(一)ES简介

搜索引擎是什么&#xff1f;在不少开发者眼中&#xff0c;ES似乎就是搜索引擎的代名词&#xff0c;然而这实际上是一种误解。搜索引擎是一种专门用于从互联网中检索信息的技术工具&#xff0c;它主要可以划分为元搜索引擎、全文搜索引擎和垂直搜索引擎几大类。其中&#xff0c;…

【算法一则】矩阵置零 【矩阵】【空间复用】

题目 给定一个 m x n 的矩阵&#xff0c;如果一个元素为 0 &#xff0c;则将其所在行和列的所有元素都设为 0 。请使用 原地 算法。 示例 1&#xff1a; 输入&#xff1a;matrix [[1,1,1],[1,0,1],[1,1,1]] 输出&#xff1a;[[1,0,1],[0,0,0],[1,0,1]]示例 2&#xff1a; …

设计模式代码实战-中间者模式

1、问题描述 小明正在设计一个简单的多人聊天室系统&#xff0c;有多个用户和一个聊天室中介者&#xff0c;用户通过中介者进行聊天&#xff0c;请你帮他完成这个系统的设计。 输入示例 3 User1 User2 User3 User1 Hello_All! User2 Hi_User1! User3 How_is_everyone? 输出…

写后端项目的分页查询时,解决分页不更新

写基于VueSpringBoot项目&#xff0c;实现分页查询功能时&#xff0c;改完代码后&#xff0c;发现页数不更新&#xff1a; 更改处如下&#xff1a; 显示如图&#xff1a; 发现页数没有变化&#xff0c;两条数据还是显示在同一页&#xff0c;而且每页都10条。且重启项目也没有更…

【408直通车】C+Python赋能数据结构:从底层原理到高级应用的蜕变之路——线性表

本专栏旨在通过使用C语言和Python分别实现各种考研常见数据结构&#xff0c;从底层原理和应用两个角度深入探索数据结构。通过深入理解数据结构的底层原理和掌握Python的高级特性&#xff0c;读者将能够全面掌握数据结构的知识&#xff0c;并且学会如何在实际应用中灵活运用。 …

查天气(Vue.js,Element UI)

演示图 几点注意 有亿点简陋&#xff0c;凑合能用&#xff0c;button一定要 !important 覆盖原本的 element ui &#xff0c;不然无效axios回调函数中 this 指向改变了&#xff0c;需要额外的保存一份服务器返回的数据比较复杂时&#xff0c;获取的时候需要注意层级结构method…

光伏电站智能勘探:无人机优势及流程详解

随着科技和互联网技术的不断发展&#xff0c;无人机在各个领域的应用越来越广泛&#xff0c;其中之一就是光伏电站智能勘探。利用无人机高清摄像头和传感器等设备&#xff0c;可以对光伏电站周边环境、日照情况、房屋状态进行全方面的勘探和记录&#xff0c;搭配卫星勘探、实地…

自动驾驶(八十四)---------中间件对比分析

很久没有写博客了&#xff0c;CSDN无故非法删了我第82篇&#xff0c;让我很恼火&#xff0c;一直提不起兴趣重新写一遍第82篇。但回初心&#xff0c;知识需要用自己的语言输出&#xff0c;所以今天对比分析自动驾驶中间件&#xff1a; 1. 中间件介绍 在自动驾驶架构中&#xf…

第14章 大数据与数据科学知识点梳理

第14章 大数据与数据科学知识点梳理&#xff08;附带页码&#xff09; ◼ 原则&#xff1a;组织应仔细管理与大数据源相关的元数据&#xff0c;以便对数据文件及其来源和价值进行准确的清单管理。P386 ◼ 大数据&#xff1a;数据量大&#xff08;Volume&#xff09;、数据更新…

嵌入式中C++指针使用方法总结

各位开发者大家好,在分享指针之前,先来看一下int *p[3]和int (*p)[3] 的区别。 int *p[3] p是一个数组,此数组有3个元素,每个元素都是int*类型,也就是指向整型数据的指针类型。 int a=10,b=20,c=30; int*p[3]={&a,&b,&c}; 而int(*p)[3]中的p是一个指向数组的…

浅谈Java的synchronized 锁以及synchronized 的锁升级

在Java中&#xff0c;synchronized关键字用于实现线程间的同步&#xff0c;确保同一时刻只有一个线程能够访问被同步的代码块或方法。当一个线程获得synchronized锁定后&#xff0c;其他试图访问同一锁的线程将被阻塞&#xff0c;直到锁被释放。 synchronized锁有两种基本形式…

计算机网络实验实验之VLAN的配置与分析

实验目的 了解什么是带内管理&#xff1b;熟练掌握如何使用telnet方式管理交换机&#xff1b;熟练掌握如何为交换机设置web方式管理&#xff1b;熟练掌握如何进入交换机web管理方式&#xff1b;了解交换机web配置界面&#xff0c;并能进行部分操作。 (6)了解VLAN原理&#xf…

python pygame事件与事件处理

本期是接上期python pygame库的略学内容最后一个步骤&#xff0c;游戏与玩家交互的内容。 一、什么是事件 游戏需要与玩家交互&#xff0c;因此它必须能够接收玩家的操作&#xff0c;并根据玩家的不同操作做出有针对性的响应。程序开发中将玩家会对游戏进行的操作称为事件&…

微服务架构与Dubbo

一、微服务架构 微服务架构是一种架构概念&#xff0c;旨在通过将功能分解到各个离散的服务中以实现对解决方案的解耦。 分布式系统式若干独立系统的集合&#xff0c;但是用户使用起来好像是在使用一套系统。 和微服务对应的是单体式开发&#xff0c;即所有的功能打包在一个WAR…

关于CRMEB 商城系统商业授权的那些事儿

现在&#xff0c;很多时候我们都会听到“授权”这个词&#xff0c;在CRMEB的商城系统产品中&#xff0c;商业授权也是一个重要环节&#xff0c;今天&#xff0c;我们就来了解一下关于CRMEB商城系统授权的那些事儿。 一、为什么要进行商业授权&#xff1f; 正版商业授权是对用户…

【Linux】详解如何利用共享内存实现进程间通信

一、共享内存&#xff08;Shared Memory&#xff09;的认识 共享内存&#xff08;Shared Memory&#xff09;是多进程间共享的一部分物理内存。它允许多个进程访问同一块内存空间&#xff0c;从而在不同进程之间共享和传递数据。这种方式常常用于加速进程间的通信&#xff0c;因…

软考130-上午题-【软件工程】-系统维护

一、系统维护概述 软件维护是软件生命周期中的最后一个阶段&#xff0c;处于系统投入生产性运行以后的时期中&#xff0c;因此不属于系统开发过程。 软件维护是在软件已经交付使用之后为了改正错误或满足新的需求而修改软件的过程&#xff0c;即软件在交付使用后对软件所做的一…

李沐-19 卷积层【动手学深度学习v2】

记录下关于权重下标变换的理解&#xff1a; 从原来的Wi,j到Wi,j,k,l是从二维到四维的过程&#xff0c;如下图所示 对全连接层使用平移不变性和局部性得到卷积层&#xff0c;这是卷积层的引入&#xff0c;下方Vi,j,a,b--->Va,b表示了平移不变性&#xff0c;给a,b限制在||内保…