软件杯 深度学习图像修复算法 - opencv python 机器视觉

news2024/11/25 0:24:27

文章目录

  • 0 前言
  • 2 什么是图像内容填充修复
  • 3 原理分析
    • 3.1 第一步:将图像理解为一个概率分布的样本
    • 3.2 补全图像
  • 3.3 快速生成假图像
    • 3.4 生成对抗网络(Generative Adversarial Net, GAN) 的架构
    • 3.5 使用G(z)生成伪图像
  • 4 在Tensorflow上构建DCGANs
  • 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 深度学图像修复算法

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 什么是图像内容填充修复

内容识别填充(译注: Content-aware fill ,是 photoshop
的一个功能)是一个强大的工具,设计师和摄影师可以用它来填充图片中不想要的部分或者缺失的部分。在填充图片的缺失或损坏的部分时,图像补全和修复是两种密切相关的技术。有很多方法可以实现内容识别填充,图像补全和修复。

  • 首先我们将图像理解为一个概率分布的样本。
  • 基于这种理解,学*如何生成伪图片。
  • 然后我们找到最适合填充回去的伪图片。

在这里插入图片描述

自动删除不需要的部分(海滩上的人)
在这里插入图片描述

最经典的人脸补充

补充前:

在这里插入图片描述

补充后:
在这里插入图片描述

3 原理分析

3.1 第一步:将图像理解为一个概率分布的样本

你是怎样补全缺失信息的呢?

在上面的例子中,想象你正在构造一个可以填充缺失部分的系统。你会怎么做呢?你觉得人类大脑是怎么做的呢?你使用了什么样的信息呢?

在博文中,我们会关注两种信息:

语境信息:你可以通过周围的像素来推测缺失像素的信息。

感知信息:你会用“正常”的部分来填充,比如你在现实生活中或其它图片上看到的样子。
两者都很重要。没有语境信息,你怎么知道填充哪一个进去?没有感知信息,通过同样的上下文可以生成无数种可能。有些机器学*系统看起来“正常”的图片,人类看起来可能不太正常。
如果有一种确切的、直观的算法,可以捕获前文图像补全步骤介绍中提到的两种属性,那就再好不过了。对于特定的情况,构造这样的算法是可行的。但是没有一般的方法。目前最好的解决方案是通过统计和机器学习来得到一个类似的技术。

在这里插入图片描述

从这个分布中采样,就可以得到一些数据。需要搞清楚的是PDF和样本之间的联系。

在这里插入图片描述

从正态分布中的采样

在这里插入图片描述
2维图像的PDF和采样。 PDF 用等高线图表示,样本点画在上面。

3.2 补全图像

首先考虑多变量正态分布, 以求得到一些启发。给定 x=1 , 那么 y 最可能的值是什么?我们可以固定x的值,然后找到使PDF最大的 y。
在这里插入图片描述
在多维正态分布中,给定x,得到最大可能的y

这个概念可以很自然地推广到图像概率分布。我们已知一些值,希望补全缺失值。这可以简单理解成一个最大化问题。我们搜索所有可能的缺失值,用于补全的图像就是可能性最大的值。
从正态分布的样本来看,只通过样本,我们就可以得出PDF。只需挑选你喜欢的 统计模型, 然后拟合数据即可。
然而,我们实际上并没有使用这种方法。对于简单分布来说,PDF很容易得出来。但是对于更复杂的图像分布来说,就十分困难,难以处理。之所以复杂,一部分原因是复杂的条件依赖:一个像素的值依赖于图像中其它像素的值。另外,最大化一个一般的PDF是一个非常困难和棘手的非凸优化问题。

3.3 快速生成假图像

在未知概率分布情况下,学习生成新样本

除了学 如何计算PDF之外,统计学中另一个成熟的想法是学 怎样用 生成模型
生成新的(随机)样本。生成模型一般很难训练和处理,但是后来深度学*社区在这个领域有了一个惊人的突破。Yann LeCun 在这篇 Quora
回答中对如何进行生成模型的训练进行了一番精彩的论述,并将它称为机器学习领域10年来最有意思的想法。

3.4 生成对抗网络(Generative Adversarial Net, GAN) 的架构

使用微步长卷积,对图像进行上采样

在这里插入图片描述
现在我们有了微步长卷积结构,可以得到G(z)的表达,以一个向量z∼pz 作为输入,输出一张 64x64x3 的RGB图像。

在这里插入图片描述

3.5 使用G(z)生成伪图像

基于DCGAN的人脸代数运算 DCGAN论文 。

在这里插入图片描述

4 在Tensorflow上构建DCGANs

部分代码:

def generator(self, z):
    self.z_, self.h0_w, self.h0_b = linear(z, self.gf_dim*8*4*4, 'g_h0_lin', with_w=True)

    self.h0 = tf.reshape(self.z_, [-1, 4, 4, self.gf_dim * 8])
    h0 = tf.nn.relu(self.g_bn0(self.h0))

    self.h1, self.h1_w, self.h1_b = conv2d_transpose(h0,
        [self.batch_size, 8, 8, self.gf_dim*4], name='g_h1', with_w=True)
    h1 = tf.nn.relu(self.g_bn1(self.h1))

    h2, self.h2_w, self.h2_b = conv2d_transpose(h1,
        [self.batch_size, 16, 16, self.gf_dim*2], name='g_h2', with_w=True)
    h2 = tf.nn.relu(self.g_bn2(h2))

    h3, self.h3_w, self.h3_b = conv2d_transpose(h2,
        [self.batch_size, 32, 32, self.gf_dim*1], name='g_h3', with_w=True)
    h3 = tf.nn.relu(self.g_bn3(h3))

    h4, self.h4_w, self.h4_b = conv2d_transpose(h3,
        [self.batch_size, 64, 64, 3], name='g_h4', with_w=True)

    return tf.nn.tanh(h4)

def discriminator(self, image, reuse=False):
    if reuse:
        tf.get_variable_scope().reuse_variables()

    h0 = lrelu(conv2d(image, self.df_dim, name='d_h0_conv'))
    h1 = lrelu(self.d_bn1(conv2d(h0, self.df_dim*2, name='d_h1_conv')))
    h2 = lrelu(self.d_bn2(conv2d(h1, self.df_dim*4, name='d_h2_conv')))
    h3 = lrelu(self.d_bn3(conv2d(h2, self.df_dim*8, name='d_h3_conv')))
    h4 = linear(tf.reshape(h3, [-1, 8192]), 1, 'd_h3_lin')

    return tf.nn.sigmoid(h4), h4

当我们初始化这个类的时候,将要用到这两个函数来构建模型。我们需要两个判别器,它们共享(复用)参数。一个用于来自数据分布的小批图像,另一个用于生成器生成的小批图像。

self.G = self.generator(self.z)
self.D, self.D_logits = self.discriminator(self.images)
self.D_, self.D_logits_ = self.discriminator(self.G, reuse=True)

接下来,我们定义损失函数。这里我们不用求和,而是用D的预测值和真实值之间的交叉熵(cross
entropy),因为它更好用。判别器希望对所有“真”数据的预测都是1,对所有生成器生成的“伪”数据的预测都是0。生成器希望判别器对两者的预测都是1 。

self.d_loss_real = tf.reduce_mean(
    tf.nn.sigmoid_cross_entropy_with_logits(self.D_logits,
                                            tf.ones_like(self.D)))
self.d_loss_fake = tf.reduce_mean(
    tf.nn.sigmoid_cross_entropy_with_logits(self.D_logits_,
                                            tf.zeros_like(self.D_)))
self.g_loss = tf.reduce_mean(
    tf.nn.sigmoid_cross_entropy_with_logits(self.D_logits_,
                                            tf.ones_like(self.D_)))
self.d_loss = self.d_loss_real + self.d_loss_fake

下面我们遍历数据。每一次迭代,我们采样一个小批数据,然后使用优化器来更新网络。有趣的是,如果G只更新一次,鉴别器的损失不会变成0。另外,我认为最后调用
d_loss_fake 和 d_loss_real 进行了一些不必要的计算, 因为这些值在 d_optim 和 g_optim 中已经计算过了。
作为Tensorflow 的一个联系,你可以试着优化这一部分,并发送PR到原始的repo。



    for epoch in xrange(config.epoch):
        ...
        for idx in xrange(0, batch_idxs):
            batch_images = ...
    
            batch_z = np.random.uniform(-1, 1, [config.batch_size, self.z_dim]) \
                        .astype(np.float32)
    
            # Update D network
            _, summary_str = self.sess.run([d_optim, self.d_sum],
                feed_dict={ self.images: batch_images, self.z: batch_z })


            # Update G network
            _, summary_str = self.sess.run([g_optim, self.g_sum],
                feed_dict={ self.z: batch_z })


            # Run g_optim twice to make sure that d_loss does not go to zero (different from paper)
            _, summary_str = self.sess.run([g_optim, self.g_sum],
                feed_dict={ self.z: batch_z })


            errD_fake = self.d_loss_fake.eval({self.z: batch_z})
            errD_real = self.d_loss_real.eval({self.images: batch_images})
            errG = self.g_loss.eval({self.z: batch_z})


最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1600588.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

解剖this指针

目录 this指针的理解 1. this指针的用处 2.this指针的使用 3.this指针的使用 this指针来源 this指针的理解 通常在class定义时要用到类型变量自身时,因为这时候还不知道变量名(为了通用也不可能固定实际的变量名),就用this这样…

【前端】1. HTML【万字长文】

HTML 基础 HTML 结构 认识 HTML 标签 HTML 代码是由 “标签” 构成的. 形如: <body>hello</body>标签名 (body) 放到 < > 中大部分标签成对出现. <body> 为开始标签, </body> 为结束标签.少数标签只有开始标签, 称为 “单标签”.开始标签和…

微软正式发布Copilot for Security

微软公司近日宣布&#xff0c;其备受期待的安全自动化解决方案——Copilot for Security现已全面上市&#xff0c;面向全球用户开放。这一创新工具的推出标志着微软在提升企业安全防护能力方面迈出了重要一步&#xff0c;同时也为安全专业人士提供了强大的支持。 Copilot for …

深入理解插入排序:直接插入排序与希尔排序

文章目录 深入理解插入排序&#xff1a;直接插入排序与希尔排序直接插入排序算法描述工作原理性能分析 希尔排序算法描述实现代码性能分析 比较直接插入排序与希尔排序结论 深入理解插入排序&#xff1a;直接插入排序与希尔排序 排序算法是计算机科学中的基石之一&#xff0c;…

【芯片介绍】中微半导高性能车规级MCU BAT32A233

中微半导体&#xff08;深圳&#xff09;股份有限公司已推出车规MCU新品——BAT32A233&#xff0c;该产品具有小资源、高性能、支持硬件LIN2.2接口的性能优势&#xff0c;非常适合汽车的门、窗、灯、传感器、控制面板、组合开关等小巧、灵活的部件应用场景。 BAT32A233基于Ar…

无线网络安全之WiFi Pineapple初探

背景 WiFi Pineapple&#xff08;大菠萝&#xff09;是由国外无线安全审计公司Hak5开发并售卖的一款无线安全测试神器。集合了一些功能强大的模块&#xff0c;基本可以还原钓鱼攻击的全过程。在学习无线安全时也是一个不错的工具&#xff0c;本文主要讲WiFi Pineapple基础配置…

使用SpringBoot3+Vue3开发公寓管理系统

项目介绍 公寓管理系统可以帮助公寓管理员更方便的进行管理房屋。功能包括系统管理、房间管理、租户管理、收租管理、房间家具管理、家具管理、维修管理、维修师傅管理、退房管理。 功能介绍 系统管理 用户管理 对系统管理员进行管理&#xff0c;新增管理员&#xff0c;修改…

数据分析(2)

数据分析&#xff08;2&#xff09; 本文介绍pandas的另一种数据类型DataFrame,中文叫数据框 DataFrame 定义&#xff1a; DataFrame是一个二维的矩阵数据表&#xff0c;通过行和列&#xff0c;可以定位一个值。 在某种程度上&#xff0c;可以认为DataFrame是“具有相同ind…

C语言单向链表的经典算法

1.分割链表 2.移除链表元素 3.反转链表 4.合并两个有序链表 5.链表的中间结点 6.环形链表的约瑟夫问题 1.分割链表: 1.思路&#xff1a;创建新链表&#xff0c;小链表和大链表。如图 代码如下 /*** Definition for singly-linked list.* struct ListNode {* int val…

JVM虚拟机(九)如何开启 GC 日志

目录 一、引言二、开启 GC 日志三、解析 GC 日志四、优化建议 一、引言 在 Java 应用程序的运行过程中&#xff0c;垃圾收集&#xff08;Garbage Collection&#xff0c;简称 GC&#xff09;是一个非常重要的环节。GC 负责自动管理内存&#xff0c;回收不再使用的对象所占用的…

用海外云手机高效率运营TikTok!

很多做国外社媒运营的公司&#xff0c;想要快速引流&#xff0c;往往一个账号是不够的&#xff0c;多数都是矩阵养号的方式&#xff0c;运营多个TikToK、Facebook、Instagram等账号&#xff0c;慢慢沉淀流量变现&#xff0c;而他们都在用海外云手机这款工具&#xff01; 海外云…

HTML 入门

HTML 简介 1. 什么是 HTML&#xff1f; 全称&#xff1a;HyperText Markup Language&#xff08;超文本标记语言&#xff09;。 超文本&#xff1a;暂且简单理解为 “超级的文本”&#xff0c;和普通文本比&#xff0c;内容更丰富。 标 记&#xff1a;文本要变成超文本&…

『FPGA通信接口』串行通信接口-SPI

文章目录 1.SPI简介2.控制时序3.Dual、Qual模式4.例程设计与代码解读5.SPI接口实战应用5.1时序要求5.2仿真时序图5.3代码设计 6.传送门 1.SPI简介 SPI是串行外设接口&#xff08;Serial Peripheral Interface&#xff09;的缩写&#xff0c;通常说SPI接口或SPI协议都是指SPI这…

IBM SPSS Statistics for Mac中文激活版:强大的数据分析工具

IBM SPSS Statistics for Mac是一款功能强大的数据分析工具&#xff0c;为Mac用户提供了高效、精准的数据分析体验。 IBM SPSS Statistics for Mac中文激活版下载 该软件拥有丰富的统计分析功能&#xff0c;无论是描述性统计、推论性统计&#xff0c;还是高级的多元统计分析&am…

智能零售:引领购物新时代

智能零售通过整合人工智能、物联网、大数据和机器学习等技术&#xff0c;正在彻底改变传统的购物模式&#xff0c;为消费者和零售商提供前所未有的效率和个性化体验。 智能零售利用消费者数据分析来提供个性化的购物推荐。无论是在线平台或是实体店内&#xff0c;智能系统都能…

“中医显示器”是人体健康监测器

随着科技的进步&#xff0c;现代医学设备已经深入到了人们的日常生活中。然而&#xff0c;在这个过程中&#xff0c;我们不应忘记我们的医学根源&#xff0c;中医。我们将中医的望、闻、问、切四诊与现代科技相结合&#xff0c;通过一系列的传感器和算法将人体的生理状态以数字…

MyBatisPlus自定义SQL

✅作者简介:大家好,我是Leo,热爱Java后端开发者,一个想要与大家共同进步的男人😉😉🍎个人主页:Leo的博客💞当前专栏: 循序渐进学SpringBoot ✨特色专栏: MySQL学习 🥭本文内容:MyBatisPlus自定义SQL 📚个人知识库: Leo知识库,欢迎大家访问 目录 1.前言☕…

机器学习方法在测井解释上的应用-以岩性分类为例

机器学习在测井解释上的应用越来越广泛&#xff0c;主要用于提高油气勘探和开发的效率和精度。通过使用机器学习算法&#xff0c;可以从测井数据中自动识别地质特征&#xff0c;预测岩石物理性质&#xff0c;以及优化油气储层的评估和管理。 以下是机器学习在测井解释中的一些…

华为配置路由式Proxy ARP示例

配置路由式Proxy ARP示例 组网图形 图1 配置路由式Proxy ARP组网图 路由式Proxy ARP简介配置注意事项组网需求配置思路操作步骤配置文件 路由式Proxy ARP简介 企业内部进行子网划分时&#xff0c;可能会出现两个子网网络属于同一网段&#xff0c;但是却不属于同一物理网络的情…

新a_bogus算法还原大赏

新a_bogus算法还原大赏 记得加我我们的学习群哦&#xff1a;529528142 1、本次新ab是继承之前旧ab的过程&#xff0c;新ab分为上半部分和下半部分&#xff0c;上半部分是之前的旧ab&#xff0c;下半部分我们开始讲解。 s.apply(l, u).length 172这是断住ab的条件&#xff0c;…