HBase的数据模型与架构

news2024/11/25 6:44:55

官方文档:Apache HBase – Apache HBase™ Homeicon-default.png?t=N7T8https://hbase.apache.org/

一、HBase概述

1.概述  

      HBase的技术源自Google的BigTable论文,HBase建立在Hadoop之上,是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统,用于存储海量的结构化或者半结构化,非结构化的数据(底层是字节数组做存储的),hbase利用Hadoop的HDFS(Hadoop分布式文件系统)作为其底层存储,并使用Zookeeper作为协同服务,以实现高可靠性和数据处理的稳定性。HBase适合存储非结构化和半结构化的数据,它不支持传统关系型数据库的复杂查询语言和事务特性,而是基于列的存储模式,允许大数据集的实时随机访问。

2.HBase处理数据形式

虽然Hadoop是一个高容错、高延时的分布式文件系统和高并发的批处理系统,但是它不适用于提供实时计算;

HBase是可以提供实时计算的分布式数据库,数据被保存在HDFS分布式文件系统上,由HDFS保证期高容错性;

但是再生产环境中,HBase是如何基于hadoop提供实时性呢?

HBase上的数据是以StoreFile(HFile)二进制流的形式存储在HDFS上block块儿中;

但是HDFS并不知道的HBase用于存储什么,它只把存储文件认为是二进制文件,也就是说,HBase的存储数据对于HDFS文件系统是透明的。

 

3.HBase与HDFS的对比

4.Hbase数据模型

HBase通过表格的模式存储数据,每个表格由列和行组成,其中,每个列又被划分为若干个列簇(colnum family),请参考下面的图:

表:HBase的数据同样是用表来组织的,表由行和列组成,列分为若干个列族,行和列的坐标交叉决定了一个单元格。

  行:每个表由若干行组成,每个行有一个行键作为这一行的唯一标识。访问表中的行只有三种方式:通过单个行键进行查询、通过一个行键的区间来访问、全表扫描。

  列簇:一个HBase表被分组成许多“列族”的集合,它是基本的访问控制单元。

  列修饰符(列限定符):列族里的数据通过列限定符(或列)来定位

  单元格:在HBase表中,通过行、列族和列限定符确定一个“单元格”(cell),单元格中存储的数据没有数据类型,总被视为字节数组byte[]

  时间戳:每个单元格都保存着同一份数据的多个版本,这些版本采用时间戳进行索引

5.Hbase数据坐标

HBase中需要根据行键、列族、列限定符和时间戳来确定一个单元格(cell),cell中的数据是没有类型的,全部是字节码形式存储,因此,可以视为一个“四维坐标”,即[行键, 列族, 列限定符, 时间戳。

图一: 

 

 

图一其实并不完全准确,下图是较为完整的理解:

图二:

6.HBase区域

HBase自动把表水平划分为区域(Region),每个区域都是有若干连续行构成的,一个区域由所属的表、起始行、终止行(不包括这行)三个要素来表示。

  一开始,一个表只有一个区域,但是随着数据的增加,区域逐渐变大,等到它超出设定的阈值(128M)大小,就会在某行的边界上进行拆分,分成两个大小基本相同的区域。然后随着数据的再增加,区域就不断的增加,如果超出了单台服务器的容量,就可以把一些区域放到其他节点上去,构成一个集群。也就是说:集群中的每个节点(Region Server)管理整个表的若干个区域。所以,我们说:区域是HBase集群上分布数据的最小单位

图解一:

 

图解二:

二、HBase系统架构

1.架构图

 

2.组件介绍与功能

HBase由三种类型的服务器以主从模式构成:

  • Region Server:负责数据的读写服务,用户通过与Region server交互来实现对数据的访问。

  • HBase HMaster:负责Region的分配及数据库的创建和删除等操作。

  • ZooKeeper:负责维护集群的状态(某台服务器是否在线,服务器之间数据的同步操作及master的选举等)。

HDFS的DataNode负责存储所有Region Server所管理的数据,即HBase中的所有数据都是以HDFS文件的形式存储的。出于使Region server所管理的数据更加本地化的考虑,Region server是根据DataNode分布的。HBase的数据在写入的时候都存储在本地。但当某一个region被移除或被重新分配的时候,就可能产生数据不在本地的情况。这种情况只有在所谓的compaction之后才能解决。

2.1 Client

包含访问HBase的接口并维护cache来加快对HBase的访问

2.2 Zookeeper

(1)保证任何时候,集群中只有一个master

(2)是存储所有Region的寻址入口(存储元数据表的元数据信息)

(3)实时监控Region server的上线和下线信息,并实时通知Master

(4)存储HBase的schema和table元数据的meta信息

2.3 Master

(1)为Region server分配region

(2)负责Region server的负载均衡

(3)发现失效的Region server并重新分配其上的region

(4)管理用户对table的增删改操作

2.4 RegionServer

(1)Region server维护region,处理对这些region的IO请求

(2)Region server负责切分在运行过程中变得过大的region 

2.5 HLog(日志文件):

HLog文件就是一个普通的Hadoop Sequence File,Sequence File 的Key是 HLogKey对象,HLogKey中记录了写入数据的归属信息,除了table和 region名字外,同时还包括sequence number和timestamp,timestamp是” 写入时间”,sequence number的起始值为0,或者是最近一次存入文件系 统sequence number。

HLog SequeceFile的Value是HBase的KeyValue对象,即对应HFile中的 KeyValue

2.6 Region

HBase自动把表水平划分成多个区域(region),每个region会保存一个表里面某段连续的数据;每个表一开始只有一个region,随着数据不断插 入表,region不断增大,当增大到一个阀值的时候,region就会等分会两个新的region(裂变);

当table中的行不断增多,就会有越来越多的region。这样一张完整的表被保存在多个Regionserver上。

2.7 Memstore 与 storefile
  1. 一个region由多个store组成,一个store对应一个CF(列簇)

  2. store包括位于内存中的memstore和位于磁盘的storefile写操作先写入 memstore,当memstore中的数据达到某个阈值,hregionserver会启动 flashcache进程写入storefile,每次写入形成单独的一个storefile

  3. 当storefile文件的数量增长到一定阈值后,系统会进行合并(minor、 major compaction),在合并过程中会进行版本合并和删除工作 (majar),形成更大的storefile。

  4. 当一个region所有storefile的大小和超过一定阈值后,会把当前的region 分割为两个,并由hmaster分配到相应的regionserver服务器,实现负载均衡。

  5. 客户端检索数据,先在memstore找,找不到再找storefile

  6. HRegion是HBase中分布式存储和负载均衡的最小单元。最小单元就表 示不同的HRegion可以分布在不同的HRegion server上。

  7. HRegion由一个或者多个Store组成,每个store保存一个columns family。

  8. 每个Strore又由一个memStore和0至多个StoreFile组成。

如下图:StoreFile 以HFile格式保存在HDFS上

image-20220608221644247

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1600506.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

ThreadLocal和ThreadLocalHashMap

请直接百度详细介绍 -------------------------------------------------------------------------------------------------------------------------------- 1.ThreadLocalMap是Thread类里的一个局部变量 2.ThreadLocalMap是ThreadLocal类里的一个静态内部类, 3.ThreadL…

Backend - DRF 序列化(django-rest-framework)

目录 一、restful 、django-rest-framework 、swagger 三者的关系 (一)restful API(REST API) 1. rest 2. restful 3. api 4. restfulAPI (二)django-rest-framework(简称DRF&#xff09…

分类算法——模型选择与调优(三)

交叉验证 交叉验证:将拿到的训练数据,分为训练和验证集。以下图为例:将数据分成4份,其中 一份作为验证集。然后经过4次(组)的测试,每次都更换不同的验证集。即得到4组模型的 结果,取…

进程间通信--共享内存

1.共享内存介绍 共享内存为多个进程之间共享和传递数据提供了一种有效的方式。共享内存是先在物 理内存上申请一块空间,多个进程可以将其映射到自己的虚拟地址空间中。 所有进 程都可以访问共享内存中的地址,就好像它们是由 malloc 分配的一样。如果某个进 程向共享内存写入了…

随着深度学习的兴起,浅层机器学习没有用武之地了吗?

深度学习的兴起确实在许多领域取得了显著的成功,尤其是那些涉及大量数据和复杂模式的识别任务,如图像识别、语音识别和自然语言处理等。然而,这并不意味着浅层机器学习(如支持向量机、决策树、朴素贝叶斯等)已经失去了…

Achronix FPGA增加对Bluespec提供的基于Linux的RISC-V软处理器的支持,以实现可扩展数据处理

Bluespec支持加速器功能的RISC-V处理器将Achronix的FPGA转化为可编程SoC 2024年4月——高性能FPGA芯片和嵌入式FPGA(eFPGA)硅知识产权(IP)领域的领先企业Achronix半导体公司,以及RISC-V工具和IP领域的行业领导者Blues…

Matlab分段微分方程组拟合【案例源码+视频教程】

专栏导读 作者简介:工学博士,高级工程师,专注于工业软件算法研究本文已收录于专栏:《复杂函数拟合案例分享》本专栏旨在提供 1.以案例的形式讲解各类复杂函数拟合的程序实现方法,并提供所有案例完整源码;2.…

OpenHarmony开发实例:【新闻客户端】

介绍 本篇Codelab我们将教会大家如何构建一个简易的OpenHarmony新闻客户端(JS版本)。应用包含两级页面,分别是主页面和详情页面,两个页面都展示了丰富的UI组件,其中详情页的实现逻辑中还展示了如何通过调用相应接口&a…

【Java NIO】那NIO为什么速度快?

Java IO在工作中其实不常用到,更别提NIO了。但NIO却是高效操作I/O流的必备技能,如顶级开源项目Kafka、Netty、RocketMQ等都采用了NIO技术,NIO也是大多数面试官必考的体系知识。虽然骨头有点难啃,但还是要慢慢消耗知识、学以致用哈…

百度智能云万源全新一代智能计算操作系统发布:引领AI新纪元,开启智能未来

随着科技的迅猛发展,人工智能(AI)逐渐渗透到我们生活的每个角落,为人类社会带来前所未有的变革。在这场科技革命的浪潮中,百度作为中国AI领域的领军企业,始终站在技术创新的前沿,不断引领行业发…

【架构-14】数据库性能优化方式

数据库出现性能瓶颈对外的表现为: 大量请求阻塞SQL操作变慢存储出现问题 为解决上述出现的问题,因此推出了一系列的数据库性能优化方式。 数据库性能优化是提高数据库系统性能和响应时间的关键任务。以下是一些常见的 数据库性能优化方式: …

在Qt中如何简单设计一个文件和图像浏览器

文本浏览器 设计一个文本浏览器程序,可以打开、显示 txt、html等文件。 1.在Qt Designer中设计一个菜单其中包含打开和退出选项: 2. 在 QMainWindow 构造函数中把 textBrower 设为主窗口的中心部件,这样整个窗口就成了包含 textBrower 的单文…

免费的 ChatGPT、GPTs、AI绘画(国内版)

🔥博客主页:白云如幻❤️感谢大家点赞👍收藏⭐评论✍️ ChatGPT3.5、GPT4.0、GPTs、AI绘画相信对大家应该不感到陌生吧?简单来说,GPT-4技术比之前的GPT-3.5相对来说更加智能,会根据用户的要求生成多种内容甚…

Elasticsearch的使用教程

Elasticsearch简介 Elasticsearch 是一个分布式、RESTful 风格的搜索和数据分析引擎,能够解决不断涌现出的各种用例。作为 Elastic Stack 的核心,Elasticsearch 会集中存储您的数据,让您飞快完成搜索,微调相关性,进行…

【读论文】【泛读】三篇生成式自动驾驶场景生成: Bevstreet, DisCoScene, BerfScene

文章目录 1. Street-View Image Generation from a Bird’s-Eye View Layout1.1 Problem introduction1.2 Why1.3 How1.4 My takeaway 2. DisCoScene: Spatially Disentangled Generative Radiance Fields for Controllable 3D-aware Scene Synthesis2.1 What2.2 Why2.3 How2.4…

hadoop编程之工资序列化排序

数据集展示 7369SMITHCLERK79021980/12/17800207499ALLENSALESMAN76981981/2/201600300307521WARDSALESMAN76981981/2/221250500307566JONESMANAGER78391981/4/22975207654MARTINSALESMAN76981981/9/2812501400307698BLAKEMANAGER78391981/5/12850307782CLARKMANAGER78391981/…

【Image captioning】论文阅读九—Self-Distillation for Few-Shot Image Captioning_2022

摘要 大规模图像字幕数据集的开发成本高昂,而大量未配对的图像和文本语料库可能有助于减少手动注释的工作。在本文中,我们研究了只需要少量带注释的图像标题对的少样本图像标题问题。我们提出了一种基于集成的自蒸馏方法,允许使用不成对的图像和字幕来训练图像字幕模型。该…

Flask Web 应用与 MongoDB 集成:用户登录和退出

在本文中,我们将探讨如何使用 Flask Web 框架和 MongoDB 数据库构建一个简单的 Web 应用。我们将使用 Flask-PyMongo 扩展来实现 MongoDB 集成,并使用 Flask-Login 扩展来处理用户认证。 1. 安装所需库 首先,我们需要安装 Flask、Flask-PyM…

如何利用纯前端技术,实现一个网页版视频编辑器?

纯网页版视频编辑器 一、前言二、功能实现三、所需技术四、部分功能实现4.1 素材预设4.2 多轨道剪辑 一、前言 介绍:本篇文章打算利用纯前端的技术,来实现一个网页版的视频编辑器。为什么突然想做一个这么项目来呢,主要是最近一直在利用手机…

初识数据库与数据库管理系统

实体的概念与数据库 实体(对象): 客观存在的事物都是实体实体数据的存储要求: 必须按照一定的分类和规律存储数据库: 专门用于存储这些实体的信息的数据集合数据库的特点: 海量存储数据/数据检索非常方便保持数据信息的一致/完整/并实现数据…