Matlab分段微分方程组拟合【案例源码+视频教程】

news2024/11/25 6:39:16

专栏导读

  • 作者简介:工学博士,高级工程师,专注于工业软件算法研究
  • 本文已收录于专栏:《复杂函数拟合案例分享》本专栏旨在提供 1.以案例的形式讲解各类复杂函数拟合的程序实现方法,并提供所有案例完整源码;2.复杂函数包含:分段函数、积分函数、常/偏微分函数、隐函数、方程组、级数函数、多参数函数;3.拟合工具是Matlab种的lsqcurvefit, nlinfit,神经网络,ga遗传算法,MultiStart全局优化算法等;4.拟合案例均源自科研实践中遇到的案例,文本教程+视频教程+案例源码,三向强化学习!提高大家解决实际数学建模的问题。
  • 案例源码地址
  • 视频课程地址】https://www.bilibili.com/video/BV1bQ4y1U7mu/?spm_id_from=333.337.search-card.all.click
  • 欢迎订阅专栏,订阅用户可私聊进入Matlab编程交流群(知识交流、问题解答),并获赠丰厚的Matlab相关学习资料教材、源码、视频课
  • 专栏订阅地址:https://blog.csdn.net/u010542847/category_12576325.html

 【总体简介】💻🔍

你将获得 分段微分方程组拟合案例【matlab源码】+视频程(试看)

获取连接Matlab分段微分方程组拟合【案例源码】

本案例通过Matlab中的lsqcurvefit()实现分段微分方程组的拟合,案例有三个难点:1.自定义拟合函数通过微分方程(求解)表示;2.微分方程分段;3.微分方程本身是方程组的形式。具体方程形式如下图所示。

需要说明的是由于待拟合参数过多,所以由于lsqcurvefit()拟合工具自身局限性,最终本案例拟合的精度并不高,但是本拟合案例的主要目的是提供一种方法,当待拟合参数较少时,会有一个理想的结果。程序可以成功运行进行迭代拟合,并得到拟合结果。拟合精度不够高的原因主要在于方程过于复杂,待拟合参数过多,超出lsqcurvefit本身适合的参数个数,如果参数个数<=5,是可以得到较好的拟合结果。

【拟合结果】

拟合精度不够高的原因主要在于方程过于复杂,待拟合参数过多,超出lsqcurvefit本身适合的参数个数,如果参数个数<=5,是可以得到较好的拟合结果。

【视频教程】

本案例已收录至b站的《Matlab复杂函数非线性拟合》专题课程【Matlab复杂函数非线性拟合专题/lsqcurvefit/nlinfit/积分函数、微分函数、隐函数、方程组、最小二乘法/机器学习/神经网络/编程/人工智能】 Matlab复杂函数非线性拟合专题/lsqcurvefit/nlinfit/积分函数、微分函数、隐函数、方程组、最小二乘法/机器学习/神经网络/编程/人工智能_哔哩哔哩_bilibili

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1600494.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

OpenHarmony开发实例:【新闻客户端】

介绍 本篇Codelab我们将教会大家如何构建一个简易的OpenHarmony新闻客户端&#xff08;JS版本&#xff09;。应用包含两级页面&#xff0c;分别是主页面和详情页面&#xff0c;两个页面都展示了丰富的UI组件&#xff0c;其中详情页的实现逻辑中还展示了如何通过调用相应接口&a…

【Java NIO】那NIO为什么速度快?

Java IO在工作中其实不常用到&#xff0c;更别提NIO了。但NIO却是高效操作I/O流的必备技能&#xff0c;如顶级开源项目Kafka、Netty、RocketMQ等都采用了NIO技术&#xff0c;NIO也是大多数面试官必考的体系知识。虽然骨头有点难啃&#xff0c;但还是要慢慢消耗知识、学以致用哈…

百度智能云万源全新一代智能计算操作系统发布:引领AI新纪元,开启智能未来

随着科技的迅猛发展&#xff0c;人工智能&#xff08;AI&#xff09;逐渐渗透到我们生活的每个角落&#xff0c;为人类社会带来前所未有的变革。在这场科技革命的浪潮中&#xff0c;百度作为中国AI领域的领军企业&#xff0c;始终站在技术创新的前沿&#xff0c;不断引领行业发…

【架构-14】数据库性能优化方式

数据库出现性能瓶颈对外的表现为&#xff1a; 大量请求阻塞SQL操作变慢存储出现问题 为解决上述出现的问题&#xff0c;因此推出了一系列的数据库性能优化方式。 数据库性能优化是提高数据库系统性能和响应时间的关键任务。以下是一些常见的 数据库性能优化方式&#xff1a; …

在Qt中如何简单设计一个文件和图像浏览器

文本浏览器 设计一个文本浏览器程序&#xff0c;可以打开、显示 txt、html等文件。 1.在Qt Designer中设计一个菜单其中包含打开和退出选项&#xff1a; 2. 在 QMainWindow 构造函数中把 textBrower 设为主窗口的中心部件&#xff0c;这样整个窗口就成了包含 textBrower 的单文…

免费的 ChatGPT、GPTs、AI绘画(国内版)

&#x1f525;博客主页&#xff1a;白云如幻❤️感谢大家点赞&#x1f44d;收藏⭐评论✍️ ChatGPT3.5、GPT4.0、GPTs、AI绘画相信对大家应该不感到陌生吧&#xff1f;简单来说&#xff0c;GPT-4技术比之前的GPT-3.5相对来说更加智能&#xff0c;会根据用户的要求生成多种内容甚…

Elasticsearch的使用教程

Elasticsearch简介 Elasticsearch 是一个分布式、RESTful 风格的搜索和数据分析引擎&#xff0c;能够解决不断涌现出的各种用例。作为 Elastic Stack 的核心&#xff0c;Elasticsearch 会集中存储您的数据&#xff0c;让您飞快完成搜索&#xff0c;微调相关性&#xff0c;进行…

【读论文】【泛读】三篇生成式自动驾驶场景生成: Bevstreet, DisCoScene, BerfScene

文章目录 1. Street-View Image Generation from a Bird’s-Eye View Layout1.1 Problem introduction1.2 Why1.3 How1.4 My takeaway 2. DisCoScene: Spatially Disentangled Generative Radiance Fields for Controllable 3D-aware Scene Synthesis2.1 What2.2 Why2.3 How2.4…

hadoop编程之工资序列化排序

数据集展示 7369SMITHCLERK79021980/12/17800207499ALLENSALESMAN76981981/2/201600300307521WARDSALESMAN76981981/2/221250500307566JONESMANAGER78391981/4/22975207654MARTINSALESMAN76981981/9/2812501400307698BLAKEMANAGER78391981/5/12850307782CLARKMANAGER78391981/…

【Image captioning】论文阅读九—Self-Distillation for Few-Shot Image Captioning_2022

摘要 大规模图像字幕数据集的开发成本高昂,而大量未配对的图像和文本语料库可能有助于减少手动注释的工作。在本文中,我们研究了只需要少量带注释的图像标题对的少样本图像标题问题。我们提出了一种基于集成的自蒸馏方法,允许使用不成对的图像和字幕来训练图像字幕模型。该…

Flask Web 应用与 MongoDB 集成:用户登录和退出

在本文中&#xff0c;我们将探讨如何使用 Flask Web 框架和 MongoDB 数据库构建一个简单的 Web 应用。我们将使用 Flask-PyMongo 扩展来实现 MongoDB 集成&#xff0c;并使用 Flask-Login 扩展来处理用户认证。 1. 安装所需库 首先&#xff0c;我们需要安装 Flask、Flask-PyM…

如何利用纯前端技术,实现一个网页版视频编辑器?

纯网页版视频编辑器 一、前言二、功能实现三、所需技术四、部分功能实现4.1 素材预设4.2 多轨道剪辑 一、前言 介绍&#xff1a;本篇文章打算利用纯前端的技术&#xff0c;来实现一个网页版的视频编辑器。为什么突然想做一个这么项目来呢&#xff0c;主要是最近一直在利用手机…

初识数据库与数据库管理系统

实体的概念与数据库 实体(对象): 客观存在的事物都是实体实体数据的存储要求: 必须按照一定的分类和规律存储数据库: 专门用于存储这些实体的信息的数据集合数据库的特点: 海量存储数据&#xff0f;数据检索非常方便保持数据信息的一致&#xff0f;完整&#xff0f;并实现数据…

C# .NET 中的反应式系统

概述&#xff1a;反应式系统已成为构建健壮、可扩展和响应迅速的应用程序的强大范式。这些系统被设计为更具弹性、弹性和消息驱动性&#xff0c;确保它们在各种条件下保持响应&#xff0c;包括高负载、网络延迟和故障。在本文中&#xff0c;我们将探讨 .NET 生态系统中反应式系…

Day 15 Linux网络管理

IP解析 IP地址组成&#xff1a;IP地址由4部分数字组成&#xff0c;每部分数字对应于8位二进制数字&#xff0c;各部分之间用小数点分开&#xff0c;这是点分2进制。如果换算为10进制我们称为点分10进制。 每个ip地址由两部分组成网络地址(NetID)和主机地址(HostID).网络地址表…

DataGrip数据库管理工具安装使用

DataGrip数据库管理工具安装使用 DataGrip介绍 DataGrip是jetbrains旗下的一款数据库管理工具&#xff0c;相信做过java开发的同学都知道&#xff0c;idea就是这家公司发明的。 DataGrip 是JetBrains公司开发的数据库管理客户端工具&#xff08;操作数据库的IDE&#xff0c;…

看图找LOGO,基于YOLOv8全系列【n/s/m/l/x】参数模型开发构建生活场景下的商品商标LOGO检测识别系统

日常生活中&#xff0c;我们会看到眼花缭乱的各种各样的产品logo&#xff0c;但是往往却未必能认全&#xff0c;正因为有这个想法&#xff0c;这里我花费了过去近两周的时间采集和构建了包含50种商品商标logo的数据集&#xff0c;基于YOLOv8全系列的参数模型开发构建了对应的检…

初识--Linux的虚拟地址空间

重新了解地址空间 在学习c/c语言的时候,大家一定见过以下这张图 说的是程序会加载在如图的结构上,实际上,我们真的对他很了解吗,而在Linux进程控制这,就会有一个奇怪的现象 前提提要:简要介绍一下fork函数 进程内核数据结构(PCB)自己的代码以及数据 在Linux中,fork可以从当…

什么是邮箱分身?如何快速创建30个邮箱分身?

很多人只知道微信、QQ等应用分身&#xff0c;对于邮箱分身并不是很了解。邮箱分身和他们的不同点在于我们直接在原有邮箱的基础上创立新的虚拟邮箱地址&#xff0c;并且密码一致&#xff0c;在我们需要运营多个社交媒体账号或者管理多个项目的情况下&#xff0c;邮箱分身是一个…

盲盒小程序成为收益“法宝”?盲盒线上如何发展

近年来&#xff0c;盲盒在年轻人中掀起了一股潮玩热风&#xff0c;受到了不少年轻人的青睐&#xff0c;盲盒商品更是在不断创新中&#xff0c;收藏价值逐渐提高。随着市场规模的扩大&#xff0c;越来越多的玩家和商家涌入到了市场中&#xff0c;盲盒的商业模式正在加快发展中。…