基于深度学习的乳腺癌淋巴结转移预测模型(E-Transformer)

news2024/11/26 0:56:26

乳腺癌细胞淋巴结转移是界定乳腺癌早中期的重要标准,需要活检,患者体验较差。

传统的图像辅助诊断需要手动提取特征、组合图像特征,效率低下、效果不佳。新兴的基于深度学习的图像辅助诊断,利用卷积神经网络通过全连接层或机器学习自动分割病灶、提取图像特征,并自动组合特征对癌症进行分类,为临床医生的诊断和治疗方案提供了新思路。但癌细胞是否有淋巴结转移在乳腺钼靶摄影中差异不大,难以区分,属于细粒度图像分类的问题。

本文提出一种基于深度学习的乳腺癌淋巴结转移预测模型,命名为E-Transformer,解决了乳腺癌淋巴结转移的细粒度分类问题。该模型使用EfficientNet进行粗粒度特征提取,添加Transformer-encoder引入注意力机制来增强模型的细粒度特征处理能力,最后使用Lightgbm进行特征组合和二分类。


乳腺癌是乳腺上皮细胞在多种致癌因素作用下失控增殖的现象。疾病早期常表现为乳房肿块、腋窝淋巴结肿大、乳头溢液等症状。到了晚期,癌细胞可能会向远处转移,出现多器官疾病,直接威胁患者的生命。目前,乳腺X线摄影是乳腺病变的首选检查。其速度快、成本低、成像清晰度高、检查结果可以保存,作为后续对比评估的依据,非常适合作为后续辅助诊断的数据源。

卷积神经网络,从最初的AlexNet到后来的VGG、GoogleNet、ResNet,深度逐渐加深,层数也不断增加。逐层细化不同类别图像中的粗粒度语义特征,根据真实类别和输出类别计算损失,通过反向传播来更新网络模型的参数。传统的CNN模型通过任意增加神经网络的深度或宽度,或者使用更高分辨率的输入图像进行训练和评估来提高分类的准确性。为了解决手动调参进行优化的问题,我们使用EfficientNet来解决这个问题。

细粒度图像分类

在已知的基本类别的基础上,对更详细的子类别进行分类。目前,医学影像领域有着广泛的业务需求和应用场景。细粒度的图像具有更多相似的外观和特征,再加上集合中姿态、视角以及噪声干扰的影响,导致数据呈现出类间差异大、类内差异小的情况,使得分类变得更加困难。

目前的细粒度分类问题主要集中在自然图像领域,如何将注意力机制引入深度学习模型中一直是近年来的热点。例如,针对目标检测领域的细粒度分类问题,Facebook 在 2020 年提出了用于目标检测的 DETR 模型。这也是第一个成功将 Transformer 集成到检测的中心构建块中的目标检测框架管道。虽然Transformer在视觉领域的应用还不够成熟,在特征提取上离不开CNN的帮助。但它为我们提供了一种思路,将在自然图像目标检测中表现良好的CNN with Transformer模型迁移到医学图像的细粒度分类任务中。

模型结构

本文以乳腺癌淋巴结转移为切入点,提出一种基于深度特征的乳腺癌淋巴结转移预测模型E-Transformer。由于淋巴结转移属于超细粒度图像分类问题,因此需要引入更强的细粒度特征处理方法。针对图像信息冗余,基于注意力机制的Transformer可以将网络有限的注意力集中在关键信息上,从而节省计算资源,快速获取有用信息。

Transformer是注意力机制在计算机视觉领域最新、最成功的应用。首先要在编码器部分进行细粒度的特征处理,EfficientNet负责粗粒度的特征提取,而lightgbm则负责最终的特征组合和分类。该模型实现了医学图像的高精度、细粒度分类,成功地将CNN、Transformer和机器学习结合在一起解决了医学图像分类问题。

数据集

乳腺癌淋巴结转移智能诊断算法使用的数据集是河南省人民医院影像中心授权的人工标记钼靶乳腺癌图像。该数据集中共有391条真实临床数据,年龄从28岁到85岁不等,其中有淋巴结转移的患者169例,无转移的患者222例。

乳腺X线摄影图像以DICOM格式存储,掩码肿瘤标志物以mha格式存储。图像分辨率主要有两种,分别是3328 X 4096和2560 x 3328。乳腺X线摄影图像中的肿瘤标志物都是河南省人民医院的放射科医生花费业余时间完成的。所有病例均有医院提供的诊断结果,判断癌细胞是否已迁移至淋巴结。对比实验中,将391例病例按照7:3随机分为训练集和测试集。为了减少实验误差的影响,我们重复实验100次,取平均值作为最终的实验结果。

数据增强

鉴于当前数据集划分为训练集的样本数量仅略多于270个,这使得模型很容易陷入过拟合。因此,采用数据增强的方法来扩大数据集是非常有必要的。在分割的病灶图像的基础上,我们通过镜像、旋转、扩展以及二三者的组合将训练集扩大到原始大小的26倍。

粗粒度图像特征提取

EfficientNet提出了一种更有原则的方法来扩展CNN,以实现更好的准确性和效率。可以使用一系列固定的缩放系数来统一缩放网络维度。通过这种新颖的缩放方法和AutoML技术,它的效率高达 10 倍(模型更小、速度更快)。综上所述,以 EfficientNet-BO 作为粗粒度图像特征提取主干。

EfficientNet的核心思想是在模型的深度、宽度和分辨率这三个维度上同时进行缩放,以达到更好的性能和效率。

MBConv模块则是EfficientNet中用于实现这种缩放的关键部分,它采用了倒转残差结构,即先通过1x1的卷积降低通道数,再进行3x3的 深度可分离卷积 ,最后再通过1x1的卷积恢复通道数。这种结构可以在减少计算量的同时保持模型的性能。

 细粒度特征加工

Transformer 有两个模块,self-attention 和 Feed Forward Neural Network,可以通过自身堆叠来构建模型。但是可以采用Transformer的Encoder模块作为细粒度特征整理模块,对CNN提取的粗粒度特征进行进一步处理。 

 特征组合与分类

决策树工具LightGBM,提出了两项新技术:基于梯度的单边采样(GOSS)和专有特征绑定(EFB)。其中GOSS排除了大部分梯度较小的数据实例,只使用剩余的样本来计算信息增益。GOSS可以在较小的数据量下获得相当准确的信息增益估计。而EFB通过捆绑互斥的特征,减少了特征数量和计算负担。

使用LightGBM作为最后一层特征分类器,对Transformer Encoder的细化特征进行特征组合和二分类。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1600237.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

ubuntu23.10.1 php8.2安装

1、更新镜像源 apt update2、安装php 如果在这里不知道自己Linux能安装什么版本的php,可以使用apt install php,会给你提示,根据提示自己选择版本安装 apt install php我这里是php8.2-cli apt install php8.2-cli其他扩展包,在后面加个-可以查看&…

跟TED演讲学英文:How AI can bring on a second Industrial Revolution by Kevin Kelly

How AI can bring on a second Industrial Revolution Link: https://www.ted.com/talks/kevin_kelly_how_ai_can_bring_on_a_second_industrial_revolution Speaker: Kevin Kelly Date: June 2016 文章目录 How AI can bring on a second Industrial RevolutionIntroduction…

福布斯发布2024年人工智能初创企业50强

随着人工智能热潮的持续,一种新的技术经济正在帮助企业开发和部署人工智能驱动的应用程序。在《福布斯》第六届年度“人工智能50强”榜单上,这类新锐企业正大行其道。该榜单遴选了AI领域最有前途的初创公司,由《福布斯》在领先行业专家的帮助…

文献速递:深度学习胰腺癌诊断--胰腺癌在CT扫描中通过深度学习检测:一项全国性的基于人群的研究

Title 题目 Pancreatic Cancer Detection on CT Scans with Deep Learning: A Nationwide Population-based Study 胰腺癌在CT扫描中通过深度学习检测:一项全国性的基于人群的研究 01 文献速递介绍 胰腺癌(PC)的五年生存率是所有癌症中…

redis五种类型介绍

Redis是一种内存数据存储系统,它支持五种不同的数据类型: 1. String String是Redis中最基本的数据类型,它可以存储任何形式的字符串数据,例如普通的文本字符串,二进制数据或JSON格式的数据。除此之外,还可以…

AtCoder Educational DP Contest

A - Frog 1 大意 有块石头,第块石头的高度为。从石头跳到石头的花费是。 一只青蛙在石头上,每次可以跳步或步,请问跳到石头的最小代价是多少? 思路 设,为青蛙跳到第号石头时的最小代价。 每一个点都可以由前两个点…

动态规划Dynamic programming详解-编辑距离问题【python】

作者介绍:10年大厂数据\经营分析经验,现任大厂数据部门负责人。 会一些的技术:数据分析、算法、SQL、大数据相关、python 欢迎加入社区:码上找工作 作者专栏每日更新: LeetCode解锁1000题: 打怪升级之旅 python数据分析…

【笔试训练】day3

今天的题又简单了很多欸 1.简写单词 没思路 代码&#xff1a; #include <iostream> #include<string> using namespace std;int main() {string str;string ans;getline(cin,str);if(str[0]>Z)ans(str[0]-32);else ansstr[0];for(int i1;i<str.size();i…

Linux第88步_非阻塞IO实验

非阻塞IO是“应用程序”对“驱动设备”进行操作&#xff0c;若不能获取到设备资源&#xff0c;则非阻塞IO应用程序的线程不会被“挂起”&#xff0c;即线程不进入休眠&#xff0c;而是一直“轮询”&#xff0c;直到获取到设备资源为止&#xff0c;或者直接放弃。 非阻塞IO应用举…

mybatis(9)-逆向工程+PageHelper+注解方式开发

最后一篇&#xff01;&#xff01; 1、逆向工程1.1、普通版1.2、增强版 2、PageHelper2.1 limit2.2 插件 3、注解开发3.1 Insert3.2Delete3.3 Update3.4 Select Results 1、逆向工程 1.1、普通版 所谓的逆向工程是&#xff1a;根据数据库表逆向生成Java的pojo类&#xff0c;S…

纯golang开发的mqtt server

Mochi-MQTT Server github地址&#xff1a;https://github.com/mochi-mqtt/server Mochi-MQTT 是一个完全兼容的、可嵌入的高性能 Go MQTT v5&#xff08;以及 v3.1.1&#xff09;中间件/服务器。 Mochi MQTT 是一个完全兼容 MQTT v5 的可嵌入的中间件/服务器&#xff0c;完…

YoloV9实战:从Labelme到训练、验证、测试、模块解析

模型实战 训练COCO数据集 本次使用2017版本的COCO数据集作为例子&#xff0c;演示如何使用YoloV8训练和预测。 下载数据集 Images: 2017 Train images [118K/18GB] &#xff1a;http://images.cocodataset.org/zips/train2017.zip2017 Val images [5K/1GB]&#xff1a;htt…

选择最佳 PoE 布线系统的 3 个步骤

选择合适的 POE 布线系统的重要性 在不断发展的信息和通信技术 &#xff08;ICT&#xff09; 领域&#xff0c;以太网供电 &#xff08;PoE&#xff09; 布线系统已成为一种革命性的解决方案&#xff0c;它简化了网络设备的部署和管理&#xff0c;同时优化了电力传输。从智能建…

傅里叶变换到底是什么

傅里叶变换到底是什么 有一个f&#xff08;t&#xff09;经傅里叶变换公式转化成F&#xff08;w&#xff09;&#xff1b; F&#xff08;w&#xff09;包括 欧拉公式转化成无限包括sin cos的函数相加。sin cos前面的参数a不为0说明这个周期函数分量存在&#xff0c;是某一种有…

基本模拟概念

目标&#xff1a; 讨论模拟电子技术的基本特性 描述模拟信号 分析信号源 解释放大器的特性 1.1模拟电子学 电子学可以划分成很多的分类来研究。其中最基本的一种分类方式是将信号分成可由 二进制数字表示的数字信号和由连续变化量表示的模拟信号。数字电子学包括所有的算术 和…

想做好抖音直播运营,这81个专业术语你必须得知道 沈阳新媒体运营培训

1.起号 释义&#xff1a;从0基础创建账号到1账号已具备基础模型&#xff0c;启动一个直播间&#xff0c;并使其能稳定卖出去东西的过程。简单一点来说&#xff0c;就是冷启动&#xff0c;通过活动或者其他方式获得快速大量曝光的一种形式。目前主流起号方式为&#xff1a;▼活…

【C++】unordered_set和unordered_map

底层哈希结构 namespace hash_bucket {template<class T>struct HashData{T _data;struct HashData* next nullptr;HashData(const T& data):_data(data){}};//仿函数:这里直接用开散列仿函数template <class K>struct HashFunc{size_t operator()(const K&a…

attention and tell论文【无标题】

这个公式使用LaTeX语法表示为&#xff1a; ( i t f t o t c t ) ( σ σ σ tanh ⁡ ) T D m n , n ( E y t − 1 h t − 1 x t ) \begin{pmatrix}i_t \\f_t \\o_t \\c_t\end{pmatrix} \begin{pmatrix}\sigma \\\sigma \\\sigma \\\tanh\end{pmatrix}T_{Dmn,n}\begin{pmatri…

HackMyVM-Gift

目录 信息收集 arp nmap WEB dirsearch hydra ssh连接 get root 信息收集 arp ┌─[rootparrot]─[~] └──╼ #arp-scan -l Interface: enp0s3, type: EN10MB, MAC: 08:00:27:16:3d:f8, IPv4: 192.168.9.102 Starting arp-scan 1.10.0 with 256 hosts (https://git…

动态规划算法求解最长公共子序列

动态规划算法是运筹学中求解多阶段决策问题的经典算法&#xff0c;本文将介绍动态规划算法的基本思想&#xff0c;并介绍如何使用动态规划算法求解最长公共子序列问题。 1. 动态规划算法的基本思想 动态规划算法本质也是基于分治思想&#xff0c;将待求解问题分解成若干个子问…