【从浅学到熟知Linux】进程控制下篇=>进程程序替换与简易Shell实现(含替换原理、execve、execvp等接口详解)

news2024/11/27 22:46:24

在这里插入图片描述

🏠关于专栏:Linux的浅学到熟知专栏用于记录Linux系统编程、网络编程等内容。
🎯每天努力一点点,技术变化看得见

文章目录

  • 进程程序替换
    • 什么是程序替换及其原理
    • 替换函数
      • execl
      • execlp
      • execle
      • execv
      • execvp
      • execvpe
      • execve
  • 替换函数总结
  • 实现简易Shell


进程程序替换

什么是程序替换及其原理

父进程创建子进程的目的只有一个:让子进程帮助父进程完成某些任务。如果要让子进程执行与父进程不同的代码有两种方式↓↓↓

  • 通过if分支判断语句决定父子进程各自的执行代码
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>

int main()
{
	pid_t id = fork();
	if(id < 0)//进程创建错误
	{
		perror("fork");
		exit(1);
	}
	else if(id == 0)//子进程
	{
		int cnt = 5;
		while(cnt)
		{
			printf("child process %d is doing something different from parent process!\n");
			cnt--;
		}
		exit(0);
	}
	else//父进程
	{
		int status = 0;
		pid_t ret = waitpid(id, &status, 0);
		if(ret == id)
		{
			printf("parent wait child process success! exitcode = %d\n", WEXITSTATUS(status));
		}
	}
	return 0;
}

在这里插入图片描述

  • 通过进程程序替换,让子进程执行与父进程完全不同代码

下面仅是演示代码,关于进程程序替换的详细内容将在下文介绍↓↓↓

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>

int main()
{
	pid_t id = fork();
	if(id < 0)
	{
		perror("fork");
		exit(1);
	}
	else if(id == 0)
	{
		execlp("top", "top", NULL);
		exit(2);
	}
	else
	{
		int status = 0;
		pid_t ret = waitpid(id, &status, 0);
		if(WIFEXITED(status))
		{
			printf("wait success! exitcode = %d\n", WEXITSTATUS(status));
		}
	}
	return 0;
}

在这里插入图片描述
从上面可知,用fork创建子进程后可以执行的程序和父进程相同的程序(但可能执行不同的代码分支),也可以通过调用exec系列函数接口来执行另一个程序。

当程序调用exec系列函数中的一个时,该进程的用户空间的代码和数据完全被新程序替换,从新程序的启动例程开始执行。调用exec并没有创建新进程,所以调用exec前后该子进程的id并没有改变。调用了exec函数后,会对子进程的数据和代码做写入,此时会发生写时拷贝(即子进程不再与父进程共享代码和数据,而是在物理空间中拥有自己独立的代码和数据)。

在这里插入图片描述
在这里插入图片描述

★ps:CPU如何得知替换后程序的入口?Linux中形成的可执行文件是有格式的(即ELF),可执行文件的表头包含可执行程序的入口地址、页表、mm_struct(程序地址空间)等。

替换函数

下面了解一下exec系列函数->替换换函数共有7个,先看一下它们,对它们有一个大致印象↓↓↓(除了execve在2号man手册,其余均位于3号man手册)
在这里插入图片描述
在这里插入图片描述

下面给出每个exec系列函数的使用方法↓↓↓

execl

int execl(const char* path, const char* arg, ...)
execl的第一个参数需要传入可执行文件的绝对路径,例如,可以传入/usr/bin/ls。而余下参数为可变参数,传入形式就和我们使用命令行命令一样,先给出命令名称,再给出命令行参数,最终以NULL结尾,例如,“ls”、“-a”、“-l”、NULL。

★ps:execl的l表示list(列出)的意思,即需要列出每个命令行参数。

下面给出接口使用示例↓↓↓

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>

int main()
{
	pid_t id = fork();
	if(id < 0)
	{
		perror("fork");
		exit(1);
	}
	else if(id == 0)
	{
		execl("/usr/bin/ls", "ls", "-a", "-l", NULL);
		exit(2);
	}
	else
	{
		int status = 0;
		pid_t ret = waitpid(id, &status, 0);
		if(WIFEXITED(status))
		{
			printf("Wait %d success! exitcode is %d\n", ret, WEXITSTATUS(status));
		}
	}
	return 0;
}

在这里插入图片描述

execlp

int execlp(const char* file, const char* arg, ...);
execlp第一个参数如果是存在于PATH环境变量中的可执行文件(如命令等),可以直接写出可执行文件名称即可,不用写绝对路径,因为execlp在执行时,会在PATH环境变量中的各个目录下查找对应的可执行文件;但如果是不存放于PATH环境变量中的各个目录下的可执行文件,则需要使用绝对路径。而余下参数为可变参数,传入形式就和我们使用命令行命令一样,先给出命令名称,再给出命令行参数,最终以NULL结尾,这与execl相同。

★ps:exec系列函数中,主要带有p的,如果可执行文件存在于PATH环境变量中,均不需要使用绝对路径,只需要给出可执行文件名即可。

下面给出接口使用示例↓↓↓

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>

int main()
{
	pid_t id = fork();
	if(id < 0)
	{
		perror("fork");
		exit(1);
	}
	else if(id == 0)
	{
		execlp("ls", "ls", "-a", "-l", NULL);
		exit(2);
	}
	else
	{
		int status = 0;
		pid_t ret = waitpid(id, &status, 0);
		if(WIFEXITED(status))
		{
			printf("Wait %d success! exitcode is %d\n", ret, WEXITSTATUS(status));
		}
	}
	return 0;
}

在这里插入图片描述

★ps:如果我们的exec系列函数能够执行系统命令,那如何执行我们自己编写的可执行程序呢?下面演示C语言程序调用C++程序↓↓↓

excute.cpp↓↓↓

#include <iostream>
using namespace std;

int main()
{
	for(int i = 0; i < 5; i++)
	{
		cout << "Jammingpro is coding..." << endl;
	}
	return 0;
}

execlp2.c

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>

int main()
{
	pid_t id = fork();
	if(id < 0)
	{
		perror("fork");
		exit(1);
	}
	else if(id == 0)
	{
		execlp("./excute", "excute", NULL);
		exit(2);
	}
	else
	{
		int status = 0;
		pid_t ret = waitpid(id, &status, 0);
		if(WIFEXITED(status))
		{
			printf("Wait %d success! exitcode is %d\n", ret, WEXITSTATUS(status));
		}
	}
	return 0;
}

在这里插入图片描述

execle

int execle(const char *path, const char *arg,..., char * const envp[]);
该接口函数的第一个参数path需要使用传入可执行文件的绝对路径,紧接其后的arg与execl用法一致,传入形式就和我们使用命令行命令一样,先给出命令名称,再给出命令行参数,最终以NULL结尾。最后一个参数envp表示环境变量。

子进程默认继承父进程的环境变量,那环境变量是什么时候传给子进程的呢?环境变量也是数据,创建子进程的时候,环境变量就被子进程继承下去了。即使对代码和数据修改时发生写时拷贝,也不会影响父子进程共享同一片环境变量空间。所以发生程序替换时,环境变量信息不会被替换。如果需要对子进程的环境变量做修改可以选择execle、execvpe、execve,这3个exec系列接口。这里先通过execle接口介绍execle、execvpe、execve的两个应用场景↓↓↓

  • 希望子进程增加新增或覆盖某些环境变量

下面代码中,父进程fork创建子进程后,子进程在进行程序替换前,给自己增加了一个"Jammingpro=666"的环境变量。子进程能获取该环境变量,而父进程无法获取该环境变量。

execle_test.c↓↓↓

#include <stdio.h>
#include <stdlib.h>

int main()
{
	char* s = getenv("Jammingpro");
	if(s != NULL) printf("%s\n", s);
	return 0;
}

execle1.c↓↓↓

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>

int main()
{
	extern char **environ;
	pid_t id = fork();
	if(id < 0)
	{
		perror("fork");
		exit(1);
	}
	else if(id == 0)//子进程
	{
		extern char **environ;
		putenv("Jammingpro=666");//给子进程新增环境变量,该语句子进程会执行
		execle("./execle_test", "execle_test", NULL, environ);
		exit(2);
	}
	else//父进程
	{
		int status = 0;
		pid_t ret = waitpid(id, &status, 0);
		char* s = getenv("Jammingpro");
		if(s != NULL) printf("%s", s);
		if(WIFEXITED(status))
		{
			printf("Wait %d success! exitcode is %d\n", ret, WEXITSTATUS(status));
		}
	}
	return 0;
}

在这里插入图片描述

  • 安全考虑及定制化场景

出于安全考虑,不希望子进程获取父进程的环境变量;或者因为子进程需要定制与父进程完全不一样的环境变量。可以定义一个字符指针数组,在该数组中存储子进程专属的环境变量,当使用execle、execvpe、execve将该环境变量传入时,会直接覆盖从父进程继承下来的环境变量。

下面代码中,给子进程创建专门的环境变量,子进程此时可以获取专门的环境变量"Jammingpro=666",但无法获取父进程的环境变量PWD,因为使用exec带e的接口时,直接覆盖了子进程从父进程那里继承的环境变量。而父进程能获取从bash继承下来的环境变量,而无法获取子进程专属的环境变量。

execle_test2.c↓↓↓

#include <stdio.h>
#include <stdlib.h>

int main()
{
	char* s = getenv("Jammingpro");
	if(s != NULL) printf("%s\n", s);
	else printf("Don't have Jammingpro\n");

	s = getenv("PWD");
	if(s != NULL) printf("%s\n", s);
	else printf("Don't have PWD\n");
	return 0;
}

execle2.c↓↓↓

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>

int main()
{
	extern char **environ;
	pid_t id = fork();
	if(id < 0)
	{
		perror("fork");
		exit(1);
	}
	else if(id == 0)//子进程
	{
		char* env[] = {"Jammingpro=666", "xiaoming=888"};
		execle("./execle_test2", "execle_test2", NULL, env);
		exit(2);
	}
	else//父进程
	{
		int status = 0;
		pid_t ret = waitpid(id, &status, 0);
		char* s = getenv("Jammingpro");
		if(s != NULL) printf("%s\n", s);
		else printf("Don't have Jammingpro\n");
	
		s = getenv("PWD");
		if(s != NULL) printf("%s\n", s);
		else printf("Don't have PWD\n");
		if(WIFEXITED(status))
		{
			printf("Wait %d success! exitcode is %d\n", ret, WEXITSTATUS(status));
		}
	}
	return 0;
}

在这里插入图片描述

★ps:关于putenv与exec带e系列接口原理探索
子进程和父进程的PCB内都有一个环境变量表指针,当子进程刚创建时,子进程的环境变量表指针与父进程指向同一个位置,一旦子进程调用putenv尝试对环境表做修改,此时则会发生写时拷贝。
在这里插入图片描述
在这里插入图片描述
环境变量表是是一个字符指针数组,也就是说:环境变量表中并不会直接存储对应的环境变量,而是存储各个环境变量的存储地址。当我们使用putenv时,本质是将我们定义环境变量(字符串或char类型数组)的首地址存储到该环境变量中。如果定义一个char env[100] = "Jammingpro=666",再执行putenv(env),则会将env的首地址存储到环境变量表中。此时不可以修改env数组中的内容,一旦修改,则对应的环境变量会跟着发生变化。

在这里插入图片描述
putenv只是修改环境变量表中某个表项的指向。但如果我们使用的是exec带e系列函数,则会直接修改进程PCB中环境变量表指针的指向。

execv

int execv(const char *path, char *const argv[]);
该接口第一个参数需要传入可执行程序的绝对路径,第二参数需要传入命令行参数,不同的是,这里并不是使用可变参数列表的方式,而是使用字符指针数组的方式。例如,我们需要执行ls命令,则第一个参数需要传入/usr/bin/ls,第二个参数需要先定义一个字符指针数组char* opts[] = {"ls", "-a", "-l", NULL},再将该数组作为第二参数传入。

★ps:exec系列函数中,带v的,则第二个参数需要以字符指针数组的形式传入命令行参数。

下面给出接口使用示例↓↓↓

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>

int main()
{
	extern char **environ;
	pid_t id = fork();
	if(id < 0)
	{
		perror("fork");
		exit(1);
	}
	else if(id == 0)//子进程
	{
		char* opts[] = {"ls", "-a", "-l", NULL};
		execv("/usr/bin/ls", opts);
		exit(2);
	}
	else//父进程
	{
		int status = 0;
		pid_t ret = waitpid(id, &status, 0);
		if(WIFEXITED(status))
		{
			printf("Wait %d success! exitcode is %d\n", ret, WEXITSTATUS(status));
		}
	}
	return 0;
}

在这里插入图片描述

execvp

int execvp(const char *file, char *const argv[]);
该接口第一个参数传入可执行文件,如果该可执行文件可以在PATH环境变量中找到,则不需要使用绝对路径,否则需要使用绝对路径;第二个参数需要以字符指针数组的形式传入命令行参数。

下面给出接口使用示例↓↓↓

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>

int main()
{
	extern char **environ;
	pid_t id = fork();
	if(id < 0)
	{
		perror("fork");
		exit(1);
	}
	else if(id == 0)//子进程
	{
		char* opts[] = {"top", NULL};
		execvp("top", opts);
		exit(2);
	}
	else//父进程
	{
		int status = 0;
		pid_t ret = waitpid(id, &status, 0);
		if(WIFEXITED(status))
		{
			printf("Wait %d success! exitcode is %d\n", ret, WEXITSTATUS(status));
		}
	}
	return 0;
}

在这里插入图片描述

execvpe

int execvpe(const char *file, char *const argv[],char *const envp[]);
该接口第一个参数传入可执行文件,如果该可执行文件可以在PATH环境变量中找到,则不需要使用绝对路径,否则需要使用绝对路径;第二个参数需要以字符指针数组的形式传入命令行参数;第三个参数需要传入环境变量。

下面给出接口使用示例(给子进程传入自定义环境变量)↓↓↓

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>

int main()
{
	extern char **environ;
	pid_t id = fork();
	if(id < 0)
	{
		perror("fork");
		exit(1);
	}
	else if(id == 0)//子进程
	{
		char* opts[] = {"top", NULL};
		char* env[] = {"Jammingpro=666"};
		execvpe("./execle_test", opts, env);
		exit(2);
	}
	else//父进程
	{
		int status = 0;
		pid_t ret = waitpid(id, &status, 0);
		if(WIFEXITED(status))
		{
			printf("Wait %d success! exitcode is %d\n", ret, WEXITSTATUS(status));
		}
	}
	return 0;
}

在这里插入图片描述

execve

int execve(const char *filename, char *const argv[],char *const envp[]);
该接口第一个参数需要传入可执行程序的绝对路径,第二个参数需要以指针数组的方式传入命令行参数,第三个参数需要传入环境变量。

下面给出该接口的使用方式↓↓↓

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>

int main()
{
	extern char **environ;
	pid_t id = fork();
	if(id < 0)
	{
		perror("fork");
		exit(1);
	}
	else if(id == 0)//子进程
	{
		char* opts[] = {"top", NULL};
		char* env[] = {"Jammingpro=666"};
		execve("./execle_test", opts, env);
		exit(2);
	}
	else//父进程
	{
		int status = 0;
		pid_t ret = waitpid(id, &status, 0);
		if(WIFEXITED(status))
		{
			printf("Wait %d success! exitcode is %d\n", ret, WEXITSTATUS(status));
		}
	}
	return 0;
}

在这里插入图片描述

替换函数总结

上面总结上面介绍的各个替换函数↓↓↓

函数名参数格式PATH中可执行程序是否需要带绝对路径是否使用当前环境变量
execl列表
execlp列表不是
execle列表不是,需自己组装环境变量
execv数组
execvp数组不是
execvpe数组不是不是,需自己组装环境变量
execve数组不是,需自己组装环境变量

上面的exec系列函数中,如果带有p的,则第一个参数的可执行文件若存在于PATH环境变量中,则只需要填写可执行文件名;如果带有v的,则需要以字符指针数组的形式传入命令行参数;如果是带e的,则需要自己组装环境变量。

上面的各个接口统称为加载器,它们为即将替换进来的可执行程序加载入参数列表、环境变量等信息。下面我们使用execvpe接口给自定义可执行程序传入命令行参数及环境变量,该可执行程序将会把命令行参数及环境变量打印至显示器↓↓↓

printInfo.c

#include <stdio.h>

int main(int argc, char* argv[]; char* env[])
{
	printf("传入%d个命令行参数,分别是:\n", argc);
	int i = 0;
	for(; argv[i]; i++)
	{
		printf("[%d]->%s\n", i, argv[i]);
	}
	printf("--------------------------------------\n");
	printf("环境变量分别是:\n");
	i = 0;
	for(; env[i]; i++)
	{
		printf("[%d]->%s\n", i, env[i]);
	}
	return 0;
}

execvpe2.c

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>

int main()
{
	extern char **environ;
	pid_t id = fork();
	if(id < 0)
	{
		perror("fork");
		exit(1);
	}
	else if(id == 0)//子进程
	{
		char* opts[] = {"printInfo", NULL};
		char* env[] = {"Jammingpro=666", "xiaoming=888"};
		execvpe("./printInfo", opts, env);
		exit(2);
	}
	else//父进程
	{
		int status = 0;
		pid_t ret = waitpid(id, &status, 0);
		if(WIFEXITED(status))
		{
			printf("Wait %d success! exitcode is %d\n", ret, WEXITSTATUS(status));
		}
	}
	return 0;
}

在这里插入图片描述
上述各个接口中,只有execve是系统调用,其他均是对该系统调用接口的封装。这也就是为什么execve位于2号手册,而其他接口函数位于3号手册的原因。

实现简易Shell

我们来模拟实现一个Shell,这个Shell具有一些常用的简易功能。下面我们用一张图了解一下Linux中bash(Shell的一种)的执行过程↓↓↓
在这里插入图片描述

一个shell程序需要循环做的事如下:
1.获取命令行
2.解析命令行
3.创建子程序
4.替换子程序
5.父进程等待子进程退出

下面我们先来完成第一步获取命令行↓↓↓

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>

#define LEFT "["
#define RIGHT "]"
#define LABLE "#"

#define COM_LEN 1024	//输入命令行长度
#define PWD_LEN 128		//当前路径长度

char command[COM_LEN];	//命令行缓冲区
char pwd[PWD_LEN];		//当前路径缓冲区

//获取用户名
const char* getUser()
{
  return getenv("USER");
}

//获取当前路径
const char* getPWD()
{
  getcwd(pwd, sizeof(pwd));
  return pwd;
}

//获取主机名
const char* getHostName()
{
  return getenv("HOSTNAME");
}

//输出提示信息&&获取用户输入
void getCommand()
{
  printf(LEFT"%s@%s %s"RIGHT""LABLE" ", getHostName(), getUser(), getPWD());
  char* s = fgets(command, sizeof(command), stdin);
  assert(s != NULL);
  (void)s;
  
  s[strlen(command) - 1] = '\0';
  printf("%s\n", command);
}

int main()
{
  while(1)
  {
    getCommand();
  }
  return 0;
}

在这里插入图片描述

下面我们需要对获取的字符串进行切割↓↓↓

★ps:下面spliteString中使用了条件编译,当编译时带上-DDEBUG,就可以输出分隔的结果

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>

#define LEFT "["
#define RIGHT "]"
#define LABLE "#"
#define SEP " \t"

#define COM_LEN 1024
#define ARG_LEN 64
#define PWD_LEN 128

char command[COM_LEN];
char *argv[ARG_LEN];
char pwd[PWD_LEN];
int argc = 0;

const char* getUser()
{
  return getenv("USER");
}

const char* getPWD()
{
  getcwd(pwd, sizeof(pwd));
  return pwd;
}

const char* getHostName()
{
  return getenv("HOSTNAME");
}

//输出提示信息&&获取用户输入
void getCommand()
{
  printf(LEFT"%s@%s %s"RIGHT""LABLE" ", getHostName(), getUser(), getPWD());
  char* s = fgets(command, sizeof(command), stdin);
  assert(s != NULL);
  (void)s;
  
  s[strlen(command) - 1] = '\0';
}

//分隔字符串
void spliteString()
{
  argc = 0;
  argv[argc++] = strtok(command, SEP);
  while(argv[argc++] = strtok(NULL, SEP));
#ifdef DEBUG 
  int j = 0;
  for(;argv[j]; j++)
  {
    printf("[%d]->%s\n", j, argv[j]);
  }
#endif
}

int main()
{
  while(1)
  {
    getCommand();
    spliteString();
  }
  return 0;
}

在这里插入图片描述

使用normalExcute创建子进程,使用程序替换的方式,让子进程执行指定程序,如果子进程替换失败则返回EXIT_CODE。父进程等待子进程,并将子进程退出码保存在exitcode中。

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>

#define LEFT "["
#define RIGHT "]"
#define LABLE "#"
#define SEP " \t"
#define EXIT_CODE 66

#define COM_LEN 1024
#define ARG_LEN 64
#define ENV_LEN 32
#define PWD_LEN 128

char command[COM_LEN];
char *argv[ARG_LEN];
char pwd[PWD_LEN];
int argc = 0;
int exitcode = 0;

const char* getUser()
{
  return getenv("USER");
}

const char* getPWD()
{
  getcwd(pwd, sizeof(pwd));
  return pwd;
}

const char* getHostName()
{
  return getenv("HOSTNAME");
}

//输出提示信息&&获取用户输入
void getCommand()
{
  printf(LEFT"%s@%s %s"RIGHT""LABLE" ", getHostName(), getUser(), getPWD());
  char* s = fgets(command, sizeof(command), stdin);
  assert(s != NULL);
  (void)s;
  
  s[strlen(command) - 1] = '\0';
}

//分隔字符串
void spliteString()
{
  argc = 0;
  argv[argc++] = strtok(command, SEP);
  while(argv[argc++] = strtok(NULL, SEP));
#ifdef DEBUG 
  int j = 0;
  for(;argv[j]; j++)
  {
    printf("[%d]->%s\n", j, argv[j]);
  }
#endif
}

void normalExcute()
{
  pid_t id = fork();
  assert(id != -1);
  if(id == 0)
  {
    exitcode = 0;
    execvp(argv[0], argv);
    exit(EXIT_CODE);
  }
  else 
  {
    int status = 0;
    pid_t id = waitpid(id, &status, 0);
    exitcode = WEXITSTATUS(status);
  }
}

int main()
{
  while(1)
  {
    getCommand();
    spliteString();
    normalExcute();
  }
  return 0;
}

在这里插入图片描述

截至到这里,我们已经实现了能够执行大部分命令的Shell程序。但如果我们执行cd命令,当前路径却没有改变。这是为什么呢?

在这里插入图片描述

当子进程被创建后,由子进程执行cd命令,则修改环境变量PWD时,子进程会发生写时拷贝,保证父子进程的独立性。因而,子进程的PWD改变,不会影响父进程。像这样的命令需要使用内建命令的方式解决,即遇到这类命令时,不让子进程执行,而是由父进程自己执行对应的函数。下面通过设置buildExcute函数,不能交由子进程执行的命令进行了特殊处理↓↓↓

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>

#define LEFT "["
#define RIGHT "]"
#define LABLE "#"
#define SEP " \t"
#define EXIT_CODE 66

#define COM_LEN 1024
#define ARG_LEN 64
#define ENV_LEN 32
#define PWD_LEN 128

char *env[ENV_LEN];
char command[COM_LEN];
char *argv[ARG_LEN];
char pwd[PWD_LEN];
int argc = 0;
int envNum = 0;
int exitcode = 0;

const char* getUser()
{
  return getenv("USER");
}

const char* getPWD()
{
  getcwd(pwd, sizeof(pwd));
  return pwd;
}

const char* getHostName()
{
  return getenv("HOSTNAME");
}

//输出提示信息&&获取用户输入
void getCommand()
{
  printf(LEFT"%s@%s %s"RIGHT""LABLE" ", getHostName(), getUser(), getPWD());
  char* s = fgets(command, sizeof(command), stdin);
  assert(s != NULL);
  (void)s;
  
  s[strlen(command) - 1] = '\0';
}

//分隔字符串
void spliteString()
{
  argc = 0;
  argv[argc++] = strtok(command, SEP);
  while(argv[argc++] = strtok(NULL, SEP));
#ifdef DEBUG 
  int j = 0;
  for(;argv[j]; j++)
  {
    printf("[%d]->%s\n", j, argv[j]);
  }
#endif
}

void normalExcute()
{
  pid_t id = fork();
  assert(id != -1);
  if(id == 0)
  {
    exitcode = 0;
    execvp(argv[0], argv);
    exit(EXIT_CODE);
  }
  else 
  {
    int status = 0;
    pid_t id = waitpid(id, &status, 0);
    exitcode = WEXITSTATUS(status);
  }
}

int buildExcute()
{
  if(argc == 3 && strcmp(argv[0], "cd") == 0)
  {
    int ret = chdir(argv[1]);
    if(ret != -1) exitcode = 0;
    else exitcode = EXIT_CODE;
    return 1;
  }
  else if(argc == 3 && strcmp(argv[0], "export") == 0)
  {
  	env[envNum] = (char*)malloc(sizeof(argv[1]) + 1);
    strcpy(env[envNum], argv[1]);
    int ret = putenv(env[envNum++]);
    if(ret == 0) exitcode = 0;
    else exitcode = EXIT_CODE;
    return 1;
  }
  else if(argc == 3 && strcmp(argv[0], "echo") == 0)
  {
    if(strcmp(argv[1], "$?") == 0) printf("%d\n", exitcode);
    else printf("%s\n", argv[1]);
    return 1;
  }
  else if(strcmp(argv[0], "ls") == 0)
  {
    argv[argc - 1] = (char*)"--color=auto";
    argv[argc] = NULL;
  }
  return 0;
}

int main()
{
  while(1)
  {
    getCommand();
    spliteString();
    int ret = buildExcute();
    if(!ret) normalExcute();
  }
  return 0;
}

至此,能执行大部分命令的Shell程序就大功告成了。但该程序并没有所有内建命令做处理。
在这里插入图片描述

★ps:当我们登录Linux的时候,就要启动一个shell进程,该进程会从用户home目录的.bash_profile中获取环境变量,从而读入环境变量。从上面的自定义实现shell程序中可知,export导入环境变量仅在当前shell进程有效。如果需要设置永久性环境变量,需要修改系统的环境变量配置文件。

★ps:现象:程序替换成功后,exec系列函数后的代码不会被执行;若替换失败,则继续向下执行。这也解释了exec系列函数为什么只有失败返回值,而没有正确返回值。一旦正确,后序代码不会执行,该正确返回值也无法使用。
在这里插入图片描述

🎈欢迎进入从浅学到熟知Linux专栏,查看更多文章。
如果上述内容有任何问题,欢迎在下方留言区指正b( ̄▽ ̄)d

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1599536.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

转行或者跳槽入职一家新公司,应该如何快速上手工作?

不管是干测试也好或者其它任何职业&#xff0c;没有谁会在一家公司待一辈子&#xff0c;转行不一定&#xff0c;但是跳槽是每一个打工人早晚都会面临的事情&#xff0c;今天就来跟大家聊聊这件事~ 入职一家新公司&#xff0c;你应该做什么可以最快速的上手工作&#xff1f; 这…

Python编程之旅:深入探索强大的容器——列表

在Python编程的世界中&#xff0c;容器&#xff08;Containers&#xff09;是一种用于存储多个项目的数据结构。其中&#xff0c;列表&#xff08;List&#xff09;是最常用且功能强大的容器之一。无论是初学者还是资深开发者&#xff0c;掌握列表的使用方法和技巧都是提升Pyth…

判断位数、按位输出、倒序输出(C语言)

一、运行结果&#xff1b; 二、源代码&#xff1b; # define _CRT_SECURE_NO_WARNINGS # include <stdio.h>int main() {//初始化变量值&#xff1b;int number 0;int i 1;int m 0;int z 0;int z1 0, z2 0, z3 0, z4 0;//提示用户&#xff1b;printf("请输…

电动汽车退役锂电池SOC主动均衡控制MATLAB仿真

微❤关注“电气仔推送”获得资料&#xff08;专享优惠&#xff09; 仿真简介 模型选用双向反激变换器作为主动均衡拓扑电路&#xff0c;均衡策略采用基于SOC的主动均衡策略&#xff0c;旨在解决电动汽车退役锂电池的不一致性问题。模型选用双向反激变换器作为主动均衡拓扑电路…

27.8k Star,AI智能体项目GPT Pilot:第一个真正的人工智能开发者(附部署视频教程)

作者&#xff1a;Aitrainee | AI进修生 排版太难了&#xff0c;请点击这里查看原文&#xff1a;27.8k Star&#xff0c;AI智能体项目GPT Pilot&#xff1a;第一个真正的人工智能开发者&#xff08;附部署视频教程&#xff09; 今天介绍一下一个人工智能智能体的项目GPT Pilot。…

关于idea中mybatis插件,下载后,无法生成代码模板--解决方法

一、不用相信网上其他解决方法 1.1试过&#xff0c;无效 二、解决方法 2.1【注&#xff1a;多试几次】重新下载&#xff0c;并重新启动idea 三、操作方法 3.1步骤 3.2idea重启&#xff0c;【如果没有重启】手动重启&#xff0c;必须有&#xff0c;很重要 3.3重新下载mybat…

试题 C: 质因数个数

萎了&#xff0c;整个人都萎了 快三天都没刷题了&#xff0c;想着明天就蓝桥杯了&#xff0c;就找了个真题做了下 可以看得出来这题很简单 但是没有测试点给我用&#xff0c;所以我的代码不保证正确性 代码如下&#xff1a; #include<cstdio> #include<cmath> …

2024 年10个最佳 Ruby 测试框架

QA一直在寻找最好的自动化测试框架&#xff0c;这些框架提供丰富的功能、简单的语法、更好的兼容性和更快的执行速度。如果您选择结合使用Ruby和Selenium进行Web测试&#xff0c;可能需要搜索基于Ruby的测试框架进行Web应用程序测试。 Ruby测试框架提供了广泛的功能&#xff0…

备忘录模式:恢复对象状态的智能方式

在软件开发中&#xff0c;备忘录模式是一种行为型设计模式&#xff0c;它允许捕获并外部化对象的内部状态&#xff0c;以便在未来某个时刻可以将对象恢复到此状态。这种模式是撤销操作或者回滚操作的关键实现机制。本文将详细介绍备忘录模式的定义、实现、应用场景以及优缺点。…

【产品经理修炼之道】- 产品经理如何做用户行为分析

一、为什么要做用户行为分析 观点一&#xff1a;有些功能整个平台用户都希望做&#xff0c;是没有必要耗费人力评估的&#xff0c;只要做了就可以了。用户行为分析是形式&#xff0c;不能为了分析而分析。观点二&#xff1a;我都在这个行业做了这么多年了&#xff0c;用户需要…

掼蛋小技巧(上篇)

一、一火保两单 如果手中的牌可以组成同花顺并且不会造成两张以上的单牌&#xff0c;我们就可以组成同花顺&#xff1b;如果组了同花顺后有两张以上的单张则果断放弃组同花顺。 二、十张出一对&#xff0c;九张出单张 掼蛋残局的时候&#xff0c;如果判断出下家手上只有一个四头…

pyqt的人脸识别 基于face_recognition库

参考文献&#xff1a; 1、python face_recognition实现人脸识别系统_python facerecognition检测人脸-CSDN博客 2、cv2.VideoCapture()_cv2.videocapture(0)-CSDN博客 1、camera.py文件代码如下&#xff1b;目录如下 import sys from PyQt5.QtWidgets import QApplication, …

JVM主要知识点详解

目录 1. 性能监控和调优 1.1 调优相关参数 1.2 内存泄漏排查 1.3 cpu飙⾼ 2. 内存与垃圾回收 2.1JVM的组成&#xff08;面试题&#xff09; 2.2 Java虚拟机栈的组成 2.3 本地方法栈 2.4 堆 2.5 方法区&#xff08;抽象概念&#xff09; 2.5.1 方法区和永久代以及元空…

listpack

目录 为什么有listpack? listpack结构 listpack的节点entry 长度length encoding编码方式 listpack的API 1.创建listpack 2.遍历操作 正向遍历 反向遍历 3.查找元素 4.插入/替换/删除元素 总结 为什么有listpack? ziplist是存储在连续内存空间&#xff0c;节省…

两部电话机怎样能实现对讲?直接连接能互相通话吗?门卫门房传达室岗亭电话怎么搞?

目录 两部电话机能直接连接吗&#xff1f;用三通头分出来一条电话线两部电话机用一根电话线直接连接能互相通话吗&#xff1f; 什么电话机可以直接连接两部IP电话机&#xff08;网络电话机&#xff09;可以直接连接两部普通电话机之间通过一个电话交换机也可以连接跨区域的两部…

代码随想录算法训练营第四十一天|343.整数拆分、96.不同的二叉搜索树

代码随想录算法训练营第四十一天|343.整数拆分、96.不同的二叉搜索树 343.整数拆分 给定一个正整数 n &#xff0c;将其拆分为 k 个 正整数 的和&#xff08; k > 2 &#xff09;&#xff0c;并使这些整数的乘积最大化。 返回 你可以获得的最大乘积 。 示例 1: 输入: n…

模仿银行系统的极简Java三层结构应用——存钱功能的实现

一&#xff0c;前提&#xff1a; 我们上次做了一个简易的银行系统&#xff0c;初步认识了java结构&#xff0c;目前该系统可以输入要用的数据并且输出。 二&#xff0c;目标&#xff1a; 我们这次的目标是实现一个简易的存钱功能&#xff0c;并输出存钱后的余额&#xff0c;…

【JavaSE】搞定String类

前言 本篇会细致讲解String类的常见用法&#xff0c;让小伙伴们搞定String类~ 欢迎关注个人主页&#xff1a;逸狼 创造不易&#xff0c;可以点点赞吗~ 如有错误&#xff0c;欢迎指出~ 目录 前言 常用的三种字符串构造 字符串长度length 字符串比较 比较 比较字符串的内容equals…

赢战2024!炼石天津落地暨开年冲锋启动会圆满成功

天津&#xff0c;因河而生&#xff0c;凭海而兴&#xff0c;京杭大运河穿城而过&#xff0c;黄崖关长城迤逦壮观。2024年3月8日&#xff0c;“炼石天津落地暨开年冲锋启动会”在天津圆满成功举行&#xff0c;天津天开发展集团有限公司、中国电信股份有限公司天津分公司、中国联…

LeetCode 94 二叉树的中序遍历

题目描述 二叉树的中序遍历 给定一个二叉树的根节点 root &#xff0c;返回 它的 中序 遍历 。 示例 1&#xff1a; 输入&#xff1a;root [1,null,2,3] 输出&#xff1a;[1,3,2]示例 2&#xff1a; 输入&#xff1a;root [] 输出&#xff1a;[]示例 3&#xff1a; 输入…