【C++】C++11 lambda表达式

news2024/12/23 19:26:18

👀樊梓慕:个人主页

 🎥个人专栏:《C语言》《数据结构》《蓝桥杯试题》《LeetCode刷题笔记》《实训项目》《C++》《Linux》《算法》

🌝每一个不曾起舞的日子,都是对生命的辜负


目录

前言

C++11引入『 lambda表达式』的原因

lambda表达式的语法

如何调用lambda表达式 

捕捉列表

lambda表达式实现swap函数的不同方式

参数传引用

捕捉列表

 lambda表达式的底层是仿函数


前言

lambda表达式的引入是为了简化代码,提高代码的可读性,在某种角度上来看,lambda表达式实际上是一个匿名函数。


欢迎大家📂收藏📂以便未来做题时可以快速找到思路,巧妙的方法可以事半功倍。 

=========================================================================

GITEE相关代码:🌟樊飞 (fanfei_c) - Gitee.com🌟

=========================================================================


C++11引入『 lambda表达式』的原因

在现实案例中,排序往往是复杂类型的排序,比如网购商品,某种商品具有很多种属性,用户可以选择不同的排序策略,比如按照价格、口碑等等。

那么按照以前我们学习过的知识,我们可以实现不同的『 仿函数』来达到根据不同属性排序的目的。

但是这样会引发一个问题:代码可读性差。

比如某个程序员他非常professional,他可能会这样命名仿函数:

struct Goods
{
	string _name;  // 名字
	double _price; // 价格
	int _evaluate; // 评价

	Goods(const char* str, double price, int evaluate)
		:_name(str)
		, _price(price)
		, _evaluate(evaluate)
	{}
};

struct ComparePriceLess
{
	bool operator()(const Goods& gl, const Goods& gr)
	{
		return gl._price < gr._price;
	}
};

struct ComparePriceGreater
{
	bool operator()(const Goods& gl, const Goods& gr)
	{
		return gl._price > gr._price;
	}
};
int main()
{
	vector<Goods> v = { { "苹果", 2.1, 5 }, { "香蕉", 3, 4 }, { "橙子", 2.2,3 }, { "菠萝", 1.5, 4 } };

	sort(v.begin(), v.end(), ComparePriceLess());
	sort(v.begin(), v.end(), ComparePriceGreater());
}

我们可以非常清晰的明白两个仿函数的意义:

  • ComparePriceLess:按价格升序;
  • ComparePriceGreater:按价格降序;

但如果这个程序员很不友好,他有可能会这样命名仿函数:

  • Compare1;
  • Compare2;

此时你不能通过名字直接了解该仿函数的逻辑,就只能查找源码,当项目比较复杂时,很明显你不希望有这样的工作。

所以lambda表达式诞生了。

虽然你还没有学习lambda表达式,但是以下的代码逻辑你一定能懂:

int main()
{
	vector<Goods> v = { { "苹果", 2.1, 300 }, { "香蕉", 3.3, 100 }, { "橙子", 2.2, 1000 }, { "菠萝", 1.5, 1 } };

    //按价格升序排序
	sort(v.begin(), v.end(), [](const Goods& g1, const Goods& g2)
	{
		return g1._price < g2._price; 
	}); 

    //按价格降序排序
	sort(v.begin(), v.end(), [](const Goods& g1, const Goods& g2)
	{
		return g1._price > g2._price;
	}); 

    //按数量升序排序
	sort(v.begin(), v.end(), [](const Goods& g1, const Goods& g2)
	{
		return g1._num < g2._num;
	}); 

    //按数量降序排序
	sort(v.begin(), v.end(), [](const Goods& g1, const Goods& g2)
	{
		return g1._num > g2._num;
	}); 

	return 0;
}

 也就是说,我们可以清晰地直接看到排序的逻辑,这样在你阅读代码时就不需要查找定义了。

是不是有点像匿名对象的味道,lambda表达式可以看作是一种匿名函数。


lambda表达式的语法

lambda表达式书写格式:[capture-list](parameters)mutable->return-type{statement}

  • [capture-list]:捕捉列表。该列表总是出现在lambda函数的开始位置,编译器根据[]来判断接下来的代码是否为lambda函数,捕捉列表能够捕捉上下文中的变量供lambda函数使用。
  • (parameters):参数列表。与普通函数的参数列表一致,如果不需要参数传递,则可以连同()一起省略。
  • mutable:默认情况下,lambda函数总是一个const函数,mutable可以取消其常量性。使用该修饰符时,参数列表不可省略(即使参数为空)。(博主主观上感觉这个关键字没啥用)
  • ->return-type:返回值类型。用追踪返回类型形式声明函数的返回值类型,没有返回值时此部分可以省略。返回值类型明确情况下,也可省略,由编译器对返回类型进行推导,所以这块我们一般不写。
  • {statement}:函数体。在该函数体内,除了可以使用其参数外,还可以使用所有捕获到的变量。

lambda函数的参数列表和返回值类型都是可选部分,但捕捉列表和函数体是不可省略的,因此简单的lambda函数如下:

int main()
{
	[]{}; //最简单的lambda表达式
    []{ cout << "hello world" << endl; };
	return 0;
}

如何调用lambda表达式 

lambda表达式实际上可以理解为无名函数,该函数无法直接调用,如果想要直接调用,可借助auto将其赋值给一个变量:

int main()
{
	auto add = [](int a, int b) {return a + b; };
	cout << add(1, 2) << endl;
    return 0;
}

捕捉列表

捕捉列表描述了上下文中哪些数据可以被lambda函数使用,以及使用的方式是传值还是传引用。

其实捕捉列表有点类似于函数传参,捕捉过来的变量是拷贝的临时对象不可修改。 

  • [var]:表示值传递方式捕捉变量var。
  • [=]:表示值传递方式捕获所有父作用域中的变量(成员函数包括this指针)。
  • [&var]:表示引用传递捕捉变量var。
  • [&]:表示引用传递捕捉所有父作用域中的变量(成员函数包括this指针)。
  • [this]:表示值传递方式捕捉当前的this指针。

注意:

  • 父作用域指的是包含lambda函数的语句块。
  • 语法上捕捉列表可由多个捕捉项组成,并以逗号分割。
    • 比如[=, &a, &b]:以引用传递的方式捕捉a和b,值传递的方式捕捉其他所有变量。
    • 比如[&, a, this]:以值传递方式捕捉变量a和this,引用方式捕捉其他变量。
  • 捕捉列表不允许变量重复传递,否则会导致编译错误。
    • 比如[=, a]重复传递了变量a(引用可以)。
  • 在块作用域以外的lambda函数捕捉列表必须为空。
  • 在块作用域中的lambda函数仅能捕捉父作用域中的局部变量,捕捉任何非此作用域或者非局部变量都会导致编译报错。
  • lambda表达式之间不能相互赋值,即使看起来类型相同(后面讲底层为什么)。

lambda表达式实现swap函数的不同方式

参数传引用

int main()
{
	int a = 10, b = 20;
	auto Swap = [](int& x, int& y)
	{
		int tmp = x;
		x = y;
		y = tmp;
	};
	Swap(a, b); //交换a和b
	return 0;
}

捕捉列表

//方式1
int main()
{
	int a = 10, b = 20;
	auto Swap = [&]
	{
		int tmp = a;
		a = b;
		b = tmp;
	};
	Swap(); //交换a和b
	return 0;
}
//方式2
int main()
{
	int a = 10, b = 20;
	auto Swap = [&a, &b]
	{
		int tmp = a;
		a = b;
		b = tmp;
	};
	Swap(); //交换a和b
	return 0;
}

注意:实际当我们以[&]或[=]的方式捕获变量时,编译器一般只会对lambda表达式中用到的变量进行捕获,这个具体看编译器的优化。

传值方式捕捉不可行:

如果以传值方式进行捕捉,那么首先编译不会通过,因为传值捕获到的变量默认是不可修改的,所以我们需要利用mutable,并且此时参数列表不可省略。比如:

int main()
{
	int a = 10, b = 20;
	auto Swap = [a, b]()mutable
	{
		int tmp = a;
		a = b;
		b = tmp;
	};
	Swap(); //交换a和b?
	return 0;
}

但由于这里是传值捕捉,lambda函数中对a和b的修改不会影响外面的a、b变量,与函数的传值传参是一个道理,因此这种方法无法完成两个数的交换。

所以博主主观认为:mutable基本没啥用,一般用不上。


 lambda表达式的底层是仿函数

其实这里非常类似范围for,在学习C++11新特性的范围for时,我们可能觉得他非常神奇,但实际上底层还是利用的迭代器。

那这里lambda表达式也看起来非常神奇,但实际上底层就是仿函数。

如果我们定义了一个lambda表达式,那么编译器就会自动生成一个类,在该类中重载了operator(),大家想这是不是就是仿函数的实现啊,只不过是编译器替我们干了。

我们来观察一下:

首先写一个普通的仿函数:

class Rate
{
public:
	Rate(double rate) : _rate(rate)
	{}
	double operator()(double money, int year)
	{
		return money * _rate * year;
	}
private:
	double _rate;
};

然后我们分别调用这个仿函数,以及一个相同功能的lambda表达式:

int main()
{
	// 函数对象(仿函数)
	double rate = 0.49;
	Rate r1(rate);
	r1(10000, 2);

	// lambda
	auto r2 = [=](double monty, int year)->double {return monty * rate * year;};
	r2(10000, 2);
	return 0;
}

进入反汇编观察:

所以我们可以知道:

本质上lambda表达式在底层被转换成了仿函数。

  • 当我们定义一个lambda表达式后,编译器会自动生成一个类,在该类中对()运算符进行重载,实际lambda函数体的实现就是这个仿函数的operator()的实现。
  • 在调用lambda表达式时,参数列表和捕获列表的参数,最终都传递给了仿函数的operator()。

我们发现lambda表达式构造出来的仿函数对象后面加了很长的一段字符串,这段字符串是『 UUID-通用唯一识别码(Universally Unique Identifier) 』,目的就是为了防止构造出重名对象。

所以你知道为什么说『 虽然lambda表达式看起来类型相同,但是之间不能相互赋值』了么?

因为他们本质上都不是同一个类型。

int main()
{
	int a = 10, b = 20;
	auto Swap1 = [](int& x, int& y)
	{
		int tmp = x;
		x = y;
		y = tmp;
	};
	auto Swap2 = [](int& x, int& y)
	{
		int tmp = x;
		x = y;
		y = tmp;
	};
	cout << typeid(Swap1).name() << endl; //class <lambda_730de80e8951d4f1039a1c0cd8e63481>
	cout << typeid(Swap2).name() << endl; //class <lambda_9a1101c5726f53e39147e39ad3b29cda>
	return 0;
}

可以看到,就算是两个一模一样的lambda表达式,它们的类型都是不同的。

如果我们想要进行赋值,可以参考下面的案例:

void (*PF)();
int main()
{
	auto f1 = [] {cout << "hello world" << endl; };
	auto f2 = [] {cout << "hello world" << endl; };

	//f1 = f2; // 编译失败--->类型不同

	// 允许使用一个lambda表达式拷贝构造一个新的副本
	auto f3(f2);
	f3();
	// 可以将lambda表达式赋值给相同类型的函数指针
	PF = f2;
	PF();
	return 0;
}

=========================================================================

如果你对该系列文章有兴趣的话,欢迎持续关注博主动态,博主会持续输出优质内容

🍎博主很需要大家的支持,你的支持是我创作的不竭动力🍎

🌟~ 点赞收藏+关注 ~🌟

=========================================================================

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1595729.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

maven3.9+下载安装

maven介绍 Maven 是一个项目管理和理解工具&#xff0c;它基于项目对象模型&#xff08;POM&#xff09;概念。Maven 可以帮助开发者定义项目结构、依赖关系、构建过程以及其他任务。它主要用于 Java 项目&#xff0c;但也可以用于其他类型的项目。Maven 的主要目标是简化构建…

传感器展会现场直击!道合顺传感邀您共鉴气体传感器前沿技术

4月14日&#xff0c;#深圳国际传感器#与应用技术展览会在深圳会展中心&#xff08;福田&#xff09;如期举办。道合顺传感亮相本届大会并展示了对气体传感器的探索和最新研究成果&#xff0c;获得了传感器业内的广泛关注。 多年来&#xff0c;道合顺传感依托于雄厚的研发实力&a…

京东jd商品详情数据接口丨店铺所有商品接口丨评论接口丨京东API接口

京东&#xff08;JD&#xff09;作为中国的主要电商平台之一&#xff0c;提供了丰富的API接口供商家和开发者使用&#xff0c;以便获取商品详情、店铺所有商品以及评论等数据。使用这些接口时&#xff0c;你需要先成为京东的商家或开发者&#xff0c;并在京东开放平台注册账号&…

一个令人惊艳的图片高清化重绘神器:SUPIR来了!

今天给大家分享一个将模糊图片还原为照片级高清图像的AI项目&#xff1a;SUPIR。这个项目以尖端的大规模人工智能革新图像恢复技术&#xff0c;通过文本驱动、智能修复&#xff0c;将AI技术与创新思维相结合&#xff0c;赋予每张图像全新的生命力。这个项目的修复能力本质上是一…

Python 实战人工智能数学基础:图像处理应用

1.背景介绍 在许多计算机视觉任务中&#xff0c;图像处理占据了很重要的角色&#xff0c;尤其是在目标检测、特征提取、分类、跟踪等计算机视觉任务中。图像处理是一个复杂的过程&#xff0c;涉及到图像的采集、分析、存储、显示等环节。本文将讨论基于Python实现的图像处理的…

Solana主网使用自定义的RPC进行转账

1、引言 如果用 browser 连接主网的 RPC server 会收到 error code 403 message 為 Access forbidden, contact your app developer or supportrpcpool.com. 错误&#xff0c;因为主网的 RPC server 会检查 HTTP Header 如果判断出來是 browser 就会报告 403 錯誤。 要解決这…

2024年第十五届蓝桥杯C/C++B组复盘(持续更新)

&#x1f525;博客主页&#xff1a; 小羊失眠啦. &#x1f3a5;系列专栏&#xff1a;《C语言》 《数据结构》 《C》 《Linux》 《Cpolar》 ❤️感谢大家点赞&#x1f44d;收藏⭐评论✍️ 文章目录 试题A&#xff1a;握手问题问题描述思路 试题B&#xff1a;小球反弹问题描述思路…

函数与结构体

P2415 集合求和 题目描述 给定一个集合 s&#xff08;集合元素数量≤30&#xff09;&#xff0c;求出此集合所有子集元素之和。 输入格式 集合中的元素&#xff08;元素≤1000&#xff09; 输出格式 s 所有子集元素之和。 输入输出样例 输入 2 3 输出 10 说明/提示【样…

Flutter - flutter_gen 资源管理

引言&#xff1a; 在开发 Flutter 应用时&#xff0c;我们经常需要使用各种静态资源&#xff0c;如图片、字体和音频等。如何有效地管理和加载这些资源呢&#xff1f;本篇博客将以图片为例带你解密 Flutter 项目中是如何管理资源地。 assets 加载资源 具体文件名引入 在工程…

软件杯 深度学习卷积神经网络的花卉识别

文章目录 0 前言1 项目背景2 花卉识别的基本原理3 算法实现3.1 预处理3.2 特征提取和选择3.3 分类器设计和决策3.4 卷积神经网络基本原理 4 算法实现4.1 花卉图像数据4.2 模块组成 5 项目执行结果6 最后 0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 基…

L1-041 寻找250

对方不想和你说话&#xff0c;并向你扔了一串数…… 而你必须从这一串数字中找到“250”这个高大上的感人数字。 输入格式&#xff1a; 输入在一行中给出不知道多少个绝对值不超过1000的整数&#xff0c;其中保证至少存在一个“250”。 输出格式&#xff1a; 在一行中输出第一次…

postman接口测试(入门到精通)

下载&#xff1a; postman官方地址 测试外部接口&#xff1a;测试被测系统和外部系统之间的接口。&#xff08;只需要测试正例即可&#xff09; 测试内部接口&#xff1a; 1.内部接口只提供给内部系统使用。&#xff08;只需要测试正例即可&#xff09; 2.内部接口提供给外…

Gradle 实战 - 插件-ApiHug准备-工具篇-015

&#x1f917; ApiHug {Postman|Swagger|Api...} 快↑ 准√ 省↓ GitHub - apihug/apihug.com: All abou the Apihug apihug.com: 有爱&#xff0c;有温度&#xff0c;有质量&#xff0c;有信任ApiHug - API design Copilot - IntelliJ IDEs Plugin | Marketplace ApiHug …

Unity 人形骨骼动画模型嘴巴张开

最近搞Daz3D玩&#xff0c;导入后挂上动画模型嘴巴张开&#xff0c;其丑无比。 Google了一下&#xff0c;得知原因是Unity没有对下巴那根骨骼做控制&#xff0c;动画系统就会把它放到默认的位置&#xff0c;嘴巴就张开了。找到了3种解决办法。 1.移除动画中对下巴这个骨骼的转…

【深度学习】YOLO-World: Real-Time Open-Vocabulary Object Detection,目标检测

介绍一个酷炫的目标检测方式&#xff1a; 论文&#xff1a;https://arxiv.org/abs/2401.17270 代码&#xff1a;https://github.com/AILab-CVC/YOLO-World 文章目录 摘要Introduction第2章 相关工作2.1 传统目标检测2.2 开放词汇目标检测 第3章 方法3.1 预训练公式&#xff1a…

C语言中的数据结构--链表的应用2(3)

前言 上一节我们学习了链表的应用&#xff0c;那么这一节我们继续加深一下对链表的理解&#xff0c;我们继续通过Leetcode的经典题目来了解一下链表在实际应用中的功能&#xff0c;废话不多说&#xff0c;我们正式进入今天的学习 单链表相关经典算法OJ题4&#xff1a;合并两个…

【前端工程化指南】什么是版本控制系统?

什么是版本控制系统 想必大家在多人开发时一定会遇到这样的问题&#xff1a; 每次集中合并大家的代码都要通过U盘、网盘等各类传输工具集中代码&#xff0c;非常麻烦。在多人同时修改同一文件或相同部分代码时&#xff0c;可能会产生冲突&#xff0c;开发人员需要手动比较代码…

自编译支持CUDA硬解的OPENCV和FFMPEG

1 整体思路 查阅opencv的官方文档&#xff0c;可看到有个cudacodec扩展&#xff0c;用他可方便的进行编解码。唯一麻烦的是需要自行编译opencv。 同时&#xff0c;为了考虑后续方便&#xff0c;顺手编译了FFMPEG&#xff0c;并将其与OPENCV绑定。 在之前的博文“鲲鹏主机昇腾A…

《系统分析与设计》实验-----需求规格说明书 哈尔滨理工大学

文章目录 需求规格说明书1&#xff0e;引言1.1编写目的1.2项目背景1.3定义1.4参考资料 2&#xff0e;任务概述2.1目标2.2运行环境2.3条件与限制 3&#xff0e;数据描述3.1静态数据3.2动态数据3.3数据库介绍3.4数据词典3.5数据采集 4&#xff0e;功能需求4.1功能划分4.2功能描述…

arxiv文章导出的bibtex格式是misc导致latex引用不正确

问题 在arxiv官网上右下角导出bibtex&#xff0c;发现是misc格式&#xff0c;然后我用的是springer的期刊latex模板&#xff0c;发现引用不正确。 引用效果如下&#xff0c;就只有一个2024。 解决方案&#xff1a; 把上面那个bibtex手动改成下面这个。 article{liu2024in…