一个令人惊艳的图片高清化重绘神器:SUPIR来了!

news2024/12/23 20:01:39

今天给大家分享一个将模糊图片还原为照片级高清图像的AI项目:SUPIR。这个项目以尖端的大规模人工智能革新图像恢复技术,通过文本驱动、智能修复,将AI技术与创新思维相结合,赋予每张图像全新的生命力。这个项目的修复能力本质上是一种重绘能力,很多搞设计的同学都说挺不错。

效果展示

经过我的实测,这个项目特别适合低分辨率和模糊照片的高清化处理,比Stable Diffusion WebUI中的高清化效果要好上很多。话不多说,先看效果:

风景图片

感觉这个项目对风景图和物件等真实图片的高清化修复效果是最好的,默认设置就可以出来比较好的效果。

人物肖像

人物肖像的处理效果稍微差点,不过相比其它的AI项目还是会好上不少的。这里我从网上找了一些模糊的剧照和普通人照片,大家可以参考下。小图看着不是很明显,放大对比效果比较明显,建议实际试试。相关图片可以到我的公众号(yinghuo6ai)领取。

老照片

这个项目也可以修复老照片,不过略感遗憾的是,这个项目没有修复破损图片的能力,和之前分享过的老照片高清修复对比一下:可以看到图片上的斑点、划线都被加强了。那种有很多雪花、污渍和裂痕的图片并不适合用SUPIR进行直接修复,可以试试一些AI在线修复工具,比如改图鸭、VanceAI等。

不过SUPIR的优点也很明显,不仅处理了面部,对画面中的其它元素也进行了修复,比如上图中的服装部分更清晰了。所以这又给我提供了一个新的思路,先通过之前SD WebUI的方法对图片进行高清处理,再通过SUPIR进一步处理,我们仍然能获得一些收益。效果对比如下:

部署安装

这个项目发布在Github上:GitHub - Fanghua-Yu/SUPIR: SUPIR aims at developing Practical Algorithms for Photo-Realistic Image Restoration In the Wild

你可以参照其中的介绍自行安装,不过坑可能比较多,还有很多模型需要特殊网络设置才能下载,仅建议技术高手尝试。

为了方便使用,我在AutoDL的云环境中制作了一个镜像,可以一键启动,直接开始创作,免去安装和下载模型的烦恼,创建实例时搜索社区镜像 yinghuoai-SUPIR 即可找到。

另外我对自己的安装过程也做了一个整理,相关程序和模型都提供了方便的下载地址,按照这个步骤你可以把它部署在任意地方。

制作不易,镜像使用方法和独立安装说明目前仅发布在我的AI绘画专栏,如有需要点此前往。

使用方法

基本使用

SUPIR使用起来很简单,只需要4步,如下图所示:

第1步:上传一张待处理的照片,这里以百度贴吧中“弱智吧”的Logo为例。

第2步:对图片进行预处理。这一步会对图片进行“伽玛校正”,校正图片的亮度和色彩。预处理的图片会展示在 Stage1 Output 处。

第3步:生成图片内容描述。这是下一步用来修复图片的提示词,生成后展示在 Prompt 处,如果感觉描述不准确,可以手动修改。

第4步:提交修复图片。这一步可能比较慢,最终效果会展示在 Upscaled Images Output 处。可以拖动中间的横线,对比原始图片和修复图片的差别。

调整参数

如果你对修复的效果不是很满意,可以调整参数试试。我在修复人像图片的时候就遇到一些问题,皮肤皱纹会比较多,显得很老,或者模型根本没有理解图片中各个部分的内容,图片崩掉了。

我们先看一下阶段1和阶段2的这几个参数,如下图所示:

基本上就是Stable Diffusion的相关参数,参数的含义我已经在图中做了标记,就不挨个介绍了,只挑几个重点的参数说明下。

4、图像放大倍数:图像越大使用的显存越多,处理的也越慢。

6、提示词引导系数:如果感觉生成的图片偏离原图过多,可以降低这个数值试试。模糊图像比较明显。

7、阶段2引导强度:如果感觉生成的图片偏离原图过多,也可以同时降低这个数值试试。模糊图像比较明显。

11、引入噪音:会在每次采样时加入一些噪音,值越大生成图片的变化会更多一些。

12、正向提示词:你想加强哪些方面,就写上对应的词语。

13、负向提示词:你不想要哪些方面,就把对应的词语写在这里。比如ugly,bad face等等。

另外还有一些参数,对图片的处理影响比较小,这里简单介绍下,如下图所示:

1、侧重质量还是还原性:图片质量高可能与原图差别较大,还原性就是保真性,更贴近原图。

3、线性阶段2引导起始阶段:这个参数会让图片更贴近提示词,产生更多变化。如果使用,建议使用0.75以上,不要偏离的太多。


以上就是本文的主要内容。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1595723.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Python 实战人工智能数学基础:图像处理应用

1.背景介绍 在许多计算机视觉任务中,图像处理占据了很重要的角色,尤其是在目标检测、特征提取、分类、跟踪等计算机视觉任务中。图像处理是一个复杂的过程,涉及到图像的采集、分析、存储、显示等环节。本文将讨论基于Python实现的图像处理的…

Solana主网使用自定义的RPC进行转账

1、引言 如果用 browser 连接主网的 RPC server 会收到 error code 403 message 為 Access forbidden, contact your app developer or supportrpcpool.com. 错误,因为主网的 RPC server 会检查 HTTP Header 如果判断出來是 browser 就会报告 403 錯誤。 要解決这…

2024年第十五届蓝桥杯C/C++B组复盘(持续更新)

🔥博客主页: 小羊失眠啦. 🎥系列专栏:《C语言》 《数据结构》 《C》 《Linux》 《Cpolar》 ❤️感谢大家点赞👍收藏⭐评论✍️ 文章目录 试题A:握手问题问题描述思路 试题B:小球反弹问题描述思路…

函数与结构体

P2415 集合求和 题目描述 给定一个集合 s(集合元素数量≤30),求出此集合所有子集元素之和。 输入格式 集合中的元素(元素≤1000) 输出格式 s 所有子集元素之和。 输入输出样例 输入 2 3 输出 10 说明/提示【样…

Flutter - flutter_gen 资源管理

引言: 在开发 Flutter 应用时,我们经常需要使用各种静态资源,如图片、字体和音频等。如何有效地管理和加载这些资源呢?本篇博客将以图片为例带你解密 Flutter 项目中是如何管理资源地。 assets 加载资源 具体文件名引入 在工程…

软件杯 深度学习卷积神经网络的花卉识别

文章目录 0 前言1 项目背景2 花卉识别的基本原理3 算法实现3.1 预处理3.2 特征提取和选择3.3 分类器设计和决策3.4 卷积神经网络基本原理 4 算法实现4.1 花卉图像数据4.2 模块组成 5 项目执行结果6 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是 基…

L1-041 寻找250

对方不想和你说话,并向你扔了一串数…… 而你必须从这一串数字中找到“250”这个高大上的感人数字。 输入格式: 输入在一行中给出不知道多少个绝对值不超过1000的整数,其中保证至少存在一个“250”。 输出格式: 在一行中输出第一次…

postman接口测试(入门到精通)

下载: postman官方地址 测试外部接口:测试被测系统和外部系统之间的接口。(只需要测试正例即可) 测试内部接口: 1.内部接口只提供给内部系统使用。(只需要测试正例即可) 2.内部接口提供给外…

Gradle 实战 - 插件-ApiHug准备-工具篇-015

🤗 ApiHug {Postman|Swagger|Api...} 快↑ 准√ 省↓ GitHub - apihug/apihug.com: All abou the Apihug apihug.com: 有爱,有温度,有质量,有信任ApiHug - API design Copilot - IntelliJ IDEs Plugin | Marketplace ApiHug …

Unity 人形骨骼动画模型嘴巴张开

最近搞Daz3D玩,导入后挂上动画模型嘴巴张开,其丑无比。 Google了一下,得知原因是Unity没有对下巴那根骨骼做控制,动画系统就会把它放到默认的位置,嘴巴就张开了。找到了3种解决办法。 1.移除动画中对下巴这个骨骼的转…

【深度学习】YOLO-World: Real-Time Open-Vocabulary Object Detection,目标检测

介绍一个酷炫的目标检测方式: 论文:https://arxiv.org/abs/2401.17270 代码:https://github.com/AILab-CVC/YOLO-World 文章目录 摘要Introduction第2章 相关工作2.1 传统目标检测2.2 开放词汇目标检测 第3章 方法3.1 预训练公式&#xff1a…

C语言中的数据结构--链表的应用2(3)

前言 上一节我们学习了链表的应用,那么这一节我们继续加深一下对链表的理解,我们继续通过Leetcode的经典题目来了解一下链表在实际应用中的功能,废话不多说,我们正式进入今天的学习 单链表相关经典算法OJ题4:合并两个…

【前端工程化指南】什么是版本控制系统?

什么是版本控制系统 想必大家在多人开发时一定会遇到这样的问题: 每次集中合并大家的代码都要通过U盘、网盘等各类传输工具集中代码,非常麻烦。在多人同时修改同一文件或相同部分代码时,可能会产生冲突,开发人员需要手动比较代码…

自编译支持CUDA硬解的OPENCV和FFMPEG

1 整体思路 查阅opencv的官方文档,可看到有个cudacodec扩展,用他可方便的进行编解码。唯一麻烦的是需要自行编译opencv。 同时,为了考虑后续方便,顺手编译了FFMPEG,并将其与OPENCV绑定。 在之前的博文“鲲鹏主机昇腾A…

《系统分析与设计》实验-----需求规格说明书 哈尔滨理工大学

文章目录 需求规格说明书1.引言1.1编写目的1.2项目背景1.3定义1.4参考资料 2.任务概述2.1目标2.2运行环境2.3条件与限制 3.数据描述3.1静态数据3.2动态数据3.3数据库介绍3.4数据词典3.5数据采集 4.功能需求4.1功能划分4.2功能描述…

arxiv文章导出的bibtex格式是misc导致latex引用不正确

问题 在arxiv官网上右下角导出bibtex,发现是misc格式,然后我用的是springer的期刊latex模板,发现引用不正确。 引用效果如下,就只有一个2024。 解决方案: 把上面那个bibtex手动改成下面这个。 article{liu2024in…

SpringCloud实用篇(四)——Nacos

Nacos nacos官方网站:https://nacos.io/ nacos是阿里巴巴的产品,现在是springcloud的一个组件,相比于eureka的功能更加丰富,在国内备受欢迎 nacos的安装 下载地址:https://github.com/alibaba/nacos/releases/ 启动…

【寒假集训营总结笔记——7道优质好题】

牛客寒假集训营总结笔记——7道优质好题 一、Trie树的应用: 题目链接:Tokitsukaze and Min-Max XOR 1、题意 2、题解 1、首先这道题的答案和元素本身的顺序是无关的,因为假如你选择了一些数字,它是默认必须排好序才能记作是答案…

docker特殊问题处理3——docker-compose安装配置nacos

最近几年随着大数据和人工智能持续大热,容器化安装部署运维已经走进了各个中小公司,也得已让众多开发者能上手实际操作,不过说真心话,“万物皆可容器化”的理念越来越深入人心。 而如何使用docker-compose安装,配置&a…

mxnet安装

ChatGPT 安装 MXNet 是一个非常直接的过程,可以通过几种方法实现,包括使用Python的包管理工具pip安装预编译的二进制包,或者从源代码编译。以下是使用pip安装MXNet的基本步骤:1. 首先,确保已经安装了Python和pip。通常…