基于深度学习的花卉检测系统(含PyQt界面)

news2025/1/23 21:14:35

基于深度学习的花卉检测系统(含PyQt界面)

  • 前言
  • 一、数据集
    • 1.1 数据集介绍
    • 1.2 数据预处理
  • 二、模型搭建
  • 三、训练与测试
    • 3.1 模型训练
    • 3.2 模型测试
  • 四、PyQt界面实现
  • 参考资料

前言

本项目是基于swin_transformer深度学习网络模型的花卉检测系统,目前能够检测daisy、dandelion、roses、sunflowers、tulips五类花卉,可以自己添加花卉种类进行训练。本文将详述数据集处理、模型构建、训练代码、以及基于PyQt5的应用界面设计。在应用中可以对花卉的图片进行识别,输出花卉的类别和模型对其预测结果的置信度。本文附带了完整的应用界面设计、深度学习模型代码和训练数据集的下载链接。

完整资源下载链接:博主在面包多网站上的完整资源下载页

项目演示视频:

【项目分享】基于深度学习的花卉检测系统(含PyQt界面)

一、数据集

1.1 数据集介绍

本项目使用的数据集是由谷歌创建的一个用于机器学习和计算机视觉任务的图像数据集,称为花卉数据集(Flower Photos Dataset)。它包含了来自五种不同花卉类别的图像,每个类别大约有几百到一千张图像。这些花卉类别包括:雏菊(Daisy)、蒲公英(Dandelion)、玫瑰(Roses)、向日葵(Sunflowers)、郁金香(Tulips) 。

下载链接:http://download.tensorflow.org/example_images/flower_photos.tgz

下载后得到一个.tgr文件,解压后,文件夹下包含了5个子文件夹,每个子文件夹都存储了一种类别的花的图片,子文件夹的名称就是花的类别的名称,如下图:
在这里插入图片描述

1.2 数据预处理

使用MyDataSet类在 PyTorch 中加载图像数据并将其与相应的类别标签配对,完成自定义数据集的生成。它包含初始化方法__init__来接收图像文件路径列表和对应的类别标签列表,并提供了__getitem__方法来获取图像及其标签,同时还可以使用collate_fn将多个样本进行批处理。

class MyDataSet(Dataset):
    """自定义数据集"""

    def __init__(self, images_path: list, images_class: list, transform=None):
        self.images_path = images_path
        self.images_class = images_class
        self.transform = transform

    def __len__(self):
        return len(self.images_path)

    def __getitem__(self, item):
        img = Image.open(self.images_path[item])
        # RGB为彩色图片,L为灰度图片
        if img.mode != 'RGB':
            raise ValueError("image: {} isn't RGB mode.".format(self.images_path[item]))
        label = self.images_class[item]

        if self.transform is not None:
            img = self.transform(img)

        return img, label

    @staticmethod
    def collate_fn(batch):
        # 官方实现的default_collate可以参考
        # https://github.com/pytorch/pytorch/blob/67b7e751e6b5931a9f45274653f4f653a4e6cdf6/torch/utils/data/_utils/collate.py
        images, labels = tuple(zip(*batch))

        images = torch.stack(images, dim=0)
        labels = torch.as_tensor(labels)
        return images, labels

二、模型搭建

我们使用的是一种称为 Swin_Transformer 的新视觉 Transformer,它可以作为 CV 的通用主干。将 Transformer 从语言适应到视觉方面的挑战来自两个域之间的差异,例如视觉实体的规模以及相比于文本单词的高分辨率图像像素的巨大差异。为解决这些差异,我们提出了一种 层次化 (hierarchical) Transformer,其表示是用移位窗口 (Shifted Windows) 计算的。移位窗口方案通过将自注意力计算限制在不重叠的局部窗口的同时,还允许跨窗口连接来提高效率。这种分层架构具有在各种尺度上建模的灵活性,并且相对于图像大小具有线性计算复杂度。Swin Transformer 的这些特性使其与广泛的视觉任务兼容,包括图像分类(ImageNet-1K 的 87.3 top-1 Acc)和密集预测任务,例如目标检测(COCO test dev 的 58.7 box AP 和 51.1 mask AP)和语义分割(ADE20K val 的 53.5 mIoU)。它的性能在 COCO 上以 +2.7 box AP 和 +2.6 mask AP 以及在 ADE20K 上 +3.2 mIoU 的大幅度超越了SOTA 技术,证明了基于 Transformer 的模型作为视觉主干的潜力。分层设计和移位窗口方法也证明了其对全 MLP 架构是有益的。Swin_Transformer模型的整体架构,如下图所示:
在这里插入图片描述
而我们代码的模型具体实现主要包括如下几个模块:PatchEmbed 模块WindowAttention模块、SwinTransformerBlock模块 BasicLayer模块、SwinTransformer模块以及辅助函数drop_path_f等。

PatchEmbed 模块:将输入图像划分为不重叠的图像块,并将每个图像块转换为嵌入向量。

class PatchEmbed(nn.Module):
    """
    2D Image to Patch Embedding
    """
    def __init__(self, patch_size=4, in_c=3, embed_dim=96, norm_layer=None):
        super().__init__()
        patch_size = (patch_size, patch_size)
        self.patch_size = patch_size
        self.in_chans = in_c
        self.embed_dim = embed_dim
        self.proj = nn.Conv2d(in_c, embed_dim, kernel_size=patch_size, stride=patch_size)
        self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()

    def forward(self, x):
        _, _, H, W = x.shape

        # padding
        # 如果输入图片的H,W不是patch_size的整数倍,需要进行padding
        pad_input = (H % self.patch_size[0] != 0) or (W % self.patch_size[1] != 0)
        if pad_input:
            # to pad the last 3 dimensions,
            # (W_left, W_right, H_top,H_bottom, C_front, C_back)
            x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1],
                          0, self.patch_size[0] - H % self.patch_size[0],
                          0, 0))

        # 下采样patch_size倍
        x = self.proj(x)
        _, _, H, W = x.shape
        # flatten: [B, C, H, W] -> [B, C, HW]
        # transpose: [B, C, HW] -> [B, HW, C]
        x = x.flatten(2).transpose(1, 2)
        x = self.norm(x)
        return x, H, W

WindowAttention 模块:基于窗口的多头自注意力机制,用于捕获图像块之间的全局关系。

class WindowAttention(nn.Module):
    r""" Window based multi-head self attention (W-MSA) module with relative position bias.
    It supports both of shifted and non-shifted window.

    Args:
        dim (int): Number of input channels.
        window_size (tuple[int]): The height and width of the window.
        num_heads (int): Number of attention heads.
        qkv_bias (bool, optional):  If True, add a learnable bias to query, key, value. Default: True
        attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
        proj_drop (float, optional): Dropout ratio of output. Default: 0.0
    """

    def __init__(self, dim, window_size, num_heads, qkv_bias=True, attn_drop=0., proj_drop=0.):

        super().__init__()
        self.dim = dim
        self.window_size = window_size  # [Mh, Mw]
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = head_dim ** -0.5

        # define a parameter table of relative position bias
        self.relative_position_bias_table = nn.Parameter(
            torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads))  # [2*Mh-1 * 2*Mw-1, nH]

        # get pair-wise relative position index for each token inside the window
        coords_h = torch.arange(self.window_size[0])
        coords_w = torch.arange(self.window_size[1])
        coords = torch.stack(torch.meshgrid([coords_h, coords_w]))  # [2, Mh, Mw]
        coords_flatten = torch.flatten(coords, 1)  # [2, Mh*Mw]
        # [2, Mh*Mw, 1] - [2, 1, Mh*Mw]
        relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]  # [2, Mh*Mw, Mh*Mw]
        relative_coords = relative_coords.permute(1, 2, 0).contiguous()  # [Mh*Mw, Mh*Mw, 2]
        relative_coords[:, :, 0] += self.window_size[0] - 1  # shift to start from 0
        relative_coords[:, :, 1] += self.window_size[1] - 1
        relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
        relative_position_index = relative_coords.sum(-1)  # [Mh*Mw, Mh*Mw]
        self.register_buffer("relative_position_index", relative_position_index)

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

        nn.init.trunc_normal_(self.relative_position_bias_table, std=.02)
        self.softmax = nn.Softmax(dim=-1)

    def forward(self, x, mask: Optional[torch.Tensor] = None):
        """
        Args:
            x: input features with shape of (num_windows*B, Mh*Mw, C)
            mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
        """
        # [batch_size*num_windows, Mh*Mw, total_embed_dim]
        B_, N, C = x.shape
        # qkv(): -> [batch_size*num_windows, Mh*Mw, 3 * total_embed_dim]
        # reshape: -> [batch_size*num_windows, Mh*Mw, 3, num_heads, embed_dim_per_head]
        # permute: -> [3, batch_size*num_windows, num_heads, Mh*Mw, embed_dim_per_head]
        qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        # [batch_size*num_windows, num_heads, Mh*Mw, embed_dim_per_head]
        q, k, v = qkv.unbind(0)  # make torchscript happy (cannot use tensor as tuple)

        # transpose: -> [batch_size*num_windows, num_heads, embed_dim_per_head, Mh*Mw]
        # @: multiply -> [batch_size*num_windows, num_heads, Mh*Mw, Mh*Mw]
        q = q * self.scale
        attn = (q @ k.transpose(-2, -1))

        # relative_position_bias_table.view: [Mh*Mw*Mh*Mw,nH] -> [Mh*Mw,Mh*Mw,nH]
        relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
            self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1)
        relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()  # [nH, Mh*Mw, Mh*Mw]
        attn = attn + relative_position_bias.unsqueeze(0)

        if mask is not None:
            # mask: [nW, Mh*Mw, Mh*Mw]
            nW = mask.shape[0]  # num_windows
            # attn.view: [batch_size, num_windows, num_heads, Mh*Mw, Mh*Mw]
            # mask.unsqueeze: [1, nW, 1, Mh*Mw, Mh*Mw]
            attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
            attn = attn.view(-1, self.num_heads, N, N)
            attn = self.softmax(attn)
        else:
            attn = self.softmax(attn)

        attn = self.attn_drop(attn)

        # @: multiply -> [batch_size*num_windows, num_heads, Mh*Mw, embed_dim_per_head]
        # transpose: -> [batch_size*num_windows, Mh*Mw, num_heads, embed_dim_per_head]
        # reshape: -> [batch_size*num_windows, Mh*Mw, total_embed_dim]
        x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x

SwinTransformerBlock 模块:Swin Transformer 的基本模块,包含了窗口注意力机制和MLP前馈网络。

class SwinTransformerBlock(nn.Module):
    r""" Swin Transformer Block.

    Args:
        dim (int): Number of input channels.
        num_heads (int): Number of attention heads.
        window_size (int): Window size.
        shift_size (int): Shift size for SW-MSA.
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
        qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
        drop (float, optional): Dropout rate. Default: 0.0
        attn_drop (float, optional): Attention dropout rate. Default: 0.0
        drop_path (float, optional): Stochastic depth rate. Default: 0.0
        act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
        norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm
    """

    def __init__(self, dim, num_heads, window_size=7, shift_size=0,
                 mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0., drop_path=0.,
                 act_layer=nn.GELU, norm_layer=nn.LayerNorm):
        super().__init__()
        self.dim = dim
        self.num_heads = num_heads
        self.window_size = window_size
        self.shift_size = shift_size
        self.mlp_ratio = mlp_ratio
        assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"

        self.norm1 = norm_layer(dim)
        self.attn = WindowAttention(
            dim, window_size=(self.window_size, self.window_size), num_heads=num_heads, qkv_bias=qkv_bias,
            attn_drop=attn_drop, proj_drop=drop)

        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)

    def forward(self, x, attn_mask):
        H, W = self.H, self.W
        B, L, C = x.shape
        assert L == H * W, "input feature has wrong size"

        shortcut = x
        x = self.norm1(x)
        x = x.view(B, H, W, C)

        # pad feature maps to multiples of window size
        # 把feature map给pad到window size的整数倍
        pad_l = pad_t = 0
        pad_r = (self.window_size - W % self.window_size) % self.window_size
        pad_b = (self.window_size - H % self.window_size) % self.window_size
        x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
        _, Hp, Wp, _ = x.shape

        # cyclic shift
        if self.shift_size > 0:
            shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
        else:
            shifted_x = x
            attn_mask = None

        # partition windows
        x_windows = window_partition(shifted_x, self.window_size)  # [nW*B, Mh, Mw, C]
        x_windows = x_windows.view(-1, self.window_size * self.window_size, C)  # [nW*B, Mh*Mw, C]

        # W-MSA/SW-MSA
        attn_windows = self.attn(x_windows, mask=attn_mask)  # [nW*B, Mh*Mw, C]

        # merge windows
        attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)  # [nW*B, Mh, Mw, C]
        shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp)  # [B, H', W', C]

        # reverse cyclic shift
        if self.shift_size > 0:
            x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
        else:
            x = shifted_x

        if pad_r > 0 or pad_b > 0:
            # 把前面pad的数据移除掉
            x = x[:, :H, :W, :].contiguous()

        x = x.view(B, H * W, C)

        # FFN
        x = shortcut + self.drop_path(x)
        x = x + self.drop_path(self.mlp(self.norm2(x)))

        return x

BasicLayer 模块:用于构建 Swin Transformer 的一个阶段,可以包含多个 SwinTransformerBlock 模块。

class BasicLayer(nn.Module):
    """
    A basic Swin Transformer layer for one stage.

    Args:
        dim (int): Number of input channels.
        depth (int): Number of blocks.
        num_heads (int): Number of attention heads.
        window_size (int): Local window size.
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
        qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
        drop (float, optional): Dropout rate. Default: 0.0
        attn_drop (float, optional): Attention dropout rate. Default: 0.0
        drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
        norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
        downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
        use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
    """

    def __init__(self, dim, depth, num_heads, window_size,
                 mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0.,
                 drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False):
        super().__init__()
        self.dim = dim
        self.depth = depth
        self.window_size = window_size
        self.use_checkpoint = use_checkpoint
        self.shift_size = window_size // 2

        # build blocks
        self.blocks = nn.ModuleList([
            SwinTransformerBlock(
                dim=dim,
                num_heads=num_heads,
                window_size=window_size,
                shift_size=0 if (i % 2 == 0) else self.shift_size,
                mlp_ratio=mlp_ratio,
                qkv_bias=qkv_bias,
                drop=drop,
                attn_drop=attn_drop,
                drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
                norm_layer=norm_layer)
            for i in range(depth)])

        # patch merging layer
        if downsample is not None:
            self.downsample = downsample(dim=dim, norm_layer=norm_layer)
        else:
            self.downsample = None

    def create_mask(self, x, H, W):
        # calculate attention mask for SW-MSA
        # 保证Hp和Wp是window_size的整数倍
        Hp = int(np.ceil(H / self.window_size)) * self.window_size
        Wp = int(np.ceil(W / self.window_size)) * self.window_size
        # 拥有和feature map一样的通道排列顺序,方便后续window_partition
        img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device)  # [1, Hp, Wp, 1]
        h_slices = (slice(0, -self.window_size),
                    slice(-self.window_size, -self.shift_size),
                    slice(-self.shift_size, None))
        w_slices = (slice(0, -self.window_size),
                    slice(-self.window_size, -self.shift_size),
                    slice(-self.shift_size, None))
        cnt = 0
        for h in h_slices:
            for w in w_slices:
                img_mask[:, h, w, :] = cnt
                cnt += 1

        mask_windows = window_partition(img_mask, self.window_size)  # [nW, Mh, Mw, 1]
        mask_windows = mask_windows.view(-1, self.window_size * self.window_size)  # [nW, Mh*Mw]
        attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)  # [nW, 1, Mh*Mw] - [nW, Mh*Mw, 1]
        # [nW, Mh*Mw, Mh*Mw]
        attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
        return attn_mask

    def forward(self, x, H, W):
        attn_mask = self.create_mask(x, H, W)  # [nW, Mh*Mw, Mh*Mw]
        for blk in self.blocks:
            blk.H, blk.W = H, W
            if not torch.jit.is_scripting() and self.use_checkpoint:
                x = checkpoint.checkpoint(blk, x, attn_mask)
            else:
                x = blk(x, attn_mask)
        if self.downsample is not None:
            x = self.downsample(x, H, W)
            H, W = (H + 1) // 2, (W + 1) // 2

        return x, H, W

SwinTransformer 模块:整个 Swin Transformer 模型的主体结构,包含了多个 BasicLayer 模块。

class SwinTransformer(nn.Module):
    r""" Swin Transformer
        A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows`  -
          https://arxiv.org/pdf/2103.14030

    Args:
        patch_size (int | tuple(int)): Patch size. Default: 4
        in_chans (int): Number of input image channels. Default: 3
        num_classes (int): Number of classes for classification head. Default: 1000
        embed_dim (int): Patch embedding dimension. Default: 96
        depths (tuple(int)): Depth of each Swin Transformer layer.
        num_heads (tuple(int)): Number of attention heads in different layers.
        window_size (int): Window size. Default: 7
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
        qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
        drop_rate (float): Dropout rate. Default: 0
        attn_drop_rate (float): Attention dropout rate. Default: 0
        drop_path_rate (float): Stochastic depth rate. Default: 0.1
        norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
        patch_norm (bool): If True, add normalization after patch embedding. Default: True
        use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
    """

    def __init__(self, patch_size=4, in_chans=3, num_classes=1000,
                 embed_dim=96, depths=(2, 2, 6, 2), num_heads=(3, 6, 12, 24),
                 window_size=7, mlp_ratio=4., qkv_bias=True,
                 drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1,
                 norm_layer=nn.LayerNorm, patch_norm=True,
                 use_checkpoint=False, **kwargs):
        super().__init__()

        self.num_classes = num_classes
        self.num_layers = len(depths)
        self.embed_dim = embed_dim
        self.patch_norm = patch_norm
        # stage4输出特征矩阵的channels
        self.num_features = int(embed_dim * 2 ** (self.num_layers - 1))
        self.mlp_ratio = mlp_ratio

        # split image into non-overlapping patches
        self.patch_embed = PatchEmbed(
            patch_size=patch_size, in_c=in_chans, embed_dim=embed_dim,
            norm_layer=norm_layer if self.patch_norm else None)
        self.pos_drop = nn.Dropout(p=drop_rate)

        # stochastic depth
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]  # stochastic depth decay rule

        # build layers
        self.layers = nn.ModuleList()
        for i_layer in range(self.num_layers):
            # 注意这里构建的stage和论文图中有些差异
            # 这里的stage不包含该stage的patch_merging层,包含的是下个stage的
            layers = BasicLayer(dim=int(embed_dim * 2 ** i_layer),
                                depth=depths[i_layer],
                                num_heads=num_heads[i_layer],
                                window_size=window_size,
                                mlp_ratio=self.mlp_ratio,
                                qkv_bias=qkv_bias,
                                drop=drop_rate,
                                attn_drop=attn_drop_rate,
                                drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
                                norm_layer=norm_layer,
                                downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
                                use_checkpoint=use_checkpoint)
            self.layers.append(layers)

        self.norm = norm_layer(self.num_features)
        self.avgpool = nn.AdaptiveAvgPool1d(1)
        self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()

        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            nn.init.trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    def forward(self, x):
        # x: [B, L, C]
        x, H, W = self.patch_embed(x)
        x = self.pos_drop(x)

        for layer in self.layers:
            x, H, W = layer(x, H, W)

        x = self.norm(x)  # [B, L, C]
        x = self.avgpool(x.transpose(1, 2))  # [B, C, 1]
        x = torch.flatten(x, 1)
        x = self.head(x)
        return x

辅助函数drop_path_f :用于实现随机深度路径(Stochastic Depth)以及一些用于处理窗口的辅助函数。

def drop_path_f(x, drop_prob: float = 0., training: bool = False):
    """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).

    This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
    the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
    See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
    changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
    'survival rate' as the argument.

    """
    if drop_prob == 0. or not training:
        return x
    keep_prob = 1 - drop_prob
    shape = (x.shape[0],) + (1,) * (x.ndim - 1)  # work with diff dim tensors, not just 2D ConvNets
    random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
    random_tensor.floor_()  # binarize
    output = x.div(keep_prob) * random_tensor
    return output

三、训练与测试

3.1 模型训练

我们训练的模型是在通用的预训练模型swin_base_patch4_window7_224.pth上再次训练的,通过模型训练微调,能给得到一个效果更好的花卉检测模型。

首先,设置模型训练的关键参数,如检测目标类别数目(可以按照自己的数据集和检测种类进行设置)、批量大小、训练周期、输入数据的维度等参数。

    parser = argparse.ArgumentParser()
    parser.add_argument('--num_classes', type=int, default=5)
    parser.add_argument('--epochs', type=int, default=100)
    parser.add_argument('--batch-size', type=int, default=16)
    parser.add_argument('--lr', type=float, default=0.0001)

    # 数据集所在根目录
    # http://download.tensorflow.org/example_images/flower_photos.tgz
    parser.add_argument('--data-path', type=str,
                        default="flower_photos")

    # 预训练权重路径,如果不想载入就设置为空字符
    parser.add_argument('--weights', type=str, default='./swin_base_patch4_window7_224.pth',
                        help='initial weights path')
    # 是否冻结权重
    parser.add_argument('--freeze-layers', type=bool, default=False)
    parser.add_argument('--device', default='cuda:0', help='device id (i.e. 0 or 0,1 or cpu)')

然后通过下面代码,设置模型训练设备和文件夹路径。接着对数据进行预处理并创建数据集和数据加载器。并根据命令行参数配置模型并加载预训练权重,可选择性地冻结部分模型参数。最后,使用AdamW优化器进行训练,并在每个epoch结束时保存模型权重。整个训练过程可以记录损失、准确率等指标,并将其写入TensorBoard。

def main(args):
    device = torch.device(args.device if torch.cuda.is_available() else "cpu")

    if os.path.exists("./weights") is False:
        os.makedirs("./weights")

    tb_writer = SummaryWriter()

    train_images_path, train_images_label, val_images_path, val_images_label = read_split_data(args.data_path)

    img_size = 224
    data_transform = {
        "train": transforms.Compose([transforms.RandomResizedCrop(img_size),
                                     transforms.RandomHorizontalFlip(),
                                     transforms.ToTensor(),
                                     transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]),
        "val": transforms.Compose([transforms.Resize(int(img_size * 1.143)),
                                   transforms.CenterCrop(img_size),
                                   transforms.ToTensor(),
                                   transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])}

    # 实例化训练数据集
    train_dataset = MyDataSet(images_path=train_images_path,
                              images_class=train_images_label,
                              transform=data_transform["train"])

    # 实例化验证数据集
    val_dataset = MyDataSet(images_path=val_images_path,
                            images_class=val_images_label,
                            transform=data_transform["val"])

    batch_size = args.batch_size
    nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8])  # number of workers
    print('Using {} dataloader workers every process'.format(nw))
    train_loader = torch.utils.data.DataLoader(train_dataset,
                                               batch_size=batch_size,
                                               shuffle=True,
                                               pin_memory=True,
                                               num_workers=nw,
                                               collate_fn=train_dataset.collate_fn)

    val_loader = torch.utils.data.DataLoader(val_dataset,
                                             batch_size=batch_size,
                                             shuffle=False,
                                             pin_memory=True,
                                             num_workers=nw,
                                             collate_fn=val_dataset.collate_fn)

    model = create_model(num_classes=args.num_classes).to(device)

    if args.weights != "":
        assert os.path.exists(args.weights), "weights file: '{}' not exist.".format(args.weights)
        weights_dict = torch.load(args.weights, map_location=device)["model"]
        # 删除有关分类类别的权重
        for k in list(weights_dict.keys()):
            if "head" in k:
                del weights_dict[k]
        print(model.load_state_dict(weights_dict, strict=False))

    if args.freeze_layers:
        for name, para in model.named_parameters():
            # 除head外,其他权重全部冻结
            if "head" not in name:
                para.requires_grad_(False)
            else:
                print("training {}".format(name))

    pg = [p for p in model.parameters() if p.requires_grad]
    optimizer = optim.AdamW(pg, lr=args.lr, weight_decay=5E-2)

    for epoch in range(args.epochs):
        # train
        train_loss, train_acc = train_one_epoch(model=model,
                                                optimizer=optimizer,
                                                data_loader=train_loader,
                                                device=device,
                                                epoch=epoch)

        # validate
        val_loss, val_acc = evaluate(model=model,
                                     data_loader=val_loader,
                                     device=device,
                                     epoch=epoch)

        train_acc_list.append(train_acc)
        train_loss_list.append(train_loss)

        val_acc_list.append(val_acc)
        val_loss_list.append(val_loss)


        tags = ["train_loss", "train_acc", "val_loss", "val_acc", "learning_rate"]
        tb_writer.add_scalar(tags[0], train_loss, epoch)
        tb_writer.add_scalar(tags[1], train_acc, epoch)
        tb_writer.add_scalar(tags[2], val_loss, epoch)
        tb_writer.add_scalar(tags[3], val_acc, epoch)
        tb_writer.add_scalar(tags[4], optimizer.param_groups[0]["lr"], epoch)

        torch.save(model.state_dict(), "./weights/model-{}.pth".format(epoch))

整个训练过程可以记录损失、准确率等指标
在这里插入图片描述

3.2 模型测试

可以分别使用predict.py对单张花卉图片和predict-batch.py批量进行检测。

# predict.py
def main(img_path):
    import os
    os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE'

    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

    img_size = 224
    data_transform = transforms.Compose(
        [transforms.Resize(int(img_size * 1.143)),
         transforms.CenterCrop(img_size),
         transforms.ToTensor(),
         transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])

    # load image
    # img_path = "./tulip.jpg"
    assert os.path.exists(img_path), "file: '{}' dose not exist.".format(img_path)
    img = Image.open(img_path)
    plt.imshow(img)
    # [N, C, H, W]
    img = data_transform(img)
    # expand batch dimension
    img = torch.unsqueeze(img, dim=0)

    # read class_indict
    json_path = './class_indices.json'
    assert os.path.exists(json_path), "file: '{}' dose not exist.".format(json_path)

    json_file = open(json_path, "r")
    class_indict = json.load(json_file)

    # create model
    model = create_model(num_classes=5).to(device)
    # load model weights
    model_weight_path = "./weights/model-86.pth"
    model.load_state_dict(torch.load(model_weight_path, map_location=device))
    model.eval()
    with torch.no_grad():
        # predict class
        output = torch.squeeze(model(img.to(device))).cpu()
        predict = torch.softmax(output, dim=0)
        predict_cla = torch.argmax(predict).numpy()

    # print_res = "class: {}   prob: {:.3}".format(class_indict[str(predict_cla)],
    #                                              predict[predict_cla].numpy())
    # plt.title(print_res)
    for i in range(len(predict)):
        print("class: {:10}   prob: {:.3}".format(class_indict[str(i)],
                                                  predict[i].numpy()))
    # plt.show()
    res = class_indict[str(list(predict.numpy()).index(max(predict.numpy())))]
    num= "%.2f" % (max(predict.numpy()) * 100) + "%"
    print(res,num)
    return res,max(predict.numpy())
    # print(class_indict[str(list(predict.numpy()).index(max(predict.numpy())))])
def main():
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

    img_size = 224
    data_transform = transforms.Compose(
        [transforms.Resize(int(img_size * 1.143)),
         transforms.CenterCrop(img_size),
         transforms.ToTensor(),
         transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])

    # read class_indict
    json_path = './class_indices.json'
    assert os.path.exists(json_path), "file: '{}' dose not exist.".format(json_path)

    json_file = open(json_path, "r")
    class_indict = json.load(json_file)

    # create model
    model = create_model(num_classes=5).to(device)
    # load model weights
    model_weight_path = "./weights/model-86.pth"
    model.load_state_dict(torch.load(model_weight_path, map_location=device))
    model.eval()


    # load image
    data_root = os.path.abspath(os.path.join(os.getcwd(), "../"))  # get data root path
    all_dir = os.path.join(data_root, "data_set")  # flower data set path
    # img_path_list = ["../tulip.jpg", "../rose.jpg"]
    img_list = []
    test_dir = os.path.join(all_dir, "jpg")  # test
    test_datasets = datasets.ImageFolder(test_dir, transform=data_transform)
    for img_path, idx in test_datasets.imgs:
        assert os.path.exists(img_path), "file: '{}' dose not exist.".format(img_path)
        # img_path = "./tulip.jpg"
        assert os.path.exists(img_path), "file: '{}' dose not exist.".format(img_path)
        img = Image.open(img_path)
        plt.imshow(img)
        # [N, C, H, W]
        img = data_transform(img)
        # expand batch dimension
        img = torch.unsqueeze(img, dim=0)


        with torch.no_grad():
            # predict class
            output = torch.squeeze(model(img.to(device))).cpu()
            predict = torch.softmax(output, dim=0)

            predict_cla = torch.argmax(predict).numpy()

        print_res = "image: {}  class: {}   prob: {:.3}".format(img_path, class_indict[str(predict_cla)],
                                                     predict[predict_cla].numpy())
        print(print_res)

测试结果:

在这里插入图片描述

四、PyQt界面实现

当整个项目构建完成后,使用PyQt5编写可视化界面,可以支持花卉图像的检测。运行主界面.py,然后点击文件夹图片传入待检测的花卉图像即可。经过花卉识别系统识别后,会输出相应的类别和置信度。
在这里插入图片描述

参考资料

  1. 论文:https://arxiv.org/pdf/2103.14030.pdf
  2. 代码:https://github.com/microsoft/Swin-Transformer
  3. timm:https://hub.fastgit.org/rwightman/pytorch-image-models/blob/master/timm/models/swin_transformer.py
  4. Swin_Transformer网络模型详解资料:详解Swin_Transformer (SwinT)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1595109.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

正确使用@RequestMapping(包含属性详解)

目录 一、基本认知二、RequestMapping的基本使用三、深入学习RequestMapping1、RequestMapping的源码2、RequestMapping的属性2.1 path2.2 method2.3 params2.4 headers2.5 consumes2.6 produces2.7 name 一、基本认知 客户端发起Http请求&#xff0c;会提供一个URL [协议://域…

Unity 2D让相机跟随角色移动

相机跟随移动 最简单的方式通过插件Cinemachine 在窗口/包管理器选择全部找到Cinemachine&#xff0c;导入。然后在游戏对象/Cinemachine创建2D Camera。此时层级中创建一个2D相机。选中人物拖入检查器Follow。此时相机跟随人物移动。 修改相机视口距离 在检查器中Lens下调正…

单细胞RNA测序(scRNA-seq)构建人类参考基因组注释

细胞定量是scRNA-seq重要的分析步骤,主要是进行细胞与基因的定量, cell ranger将比对、质控、定量都封装了起来,使用起来也相当便捷。 单细胞RNA测序(scRNA-seq)基础知识可查看以下文章: 单细胞RNA测序(scRNA-seq)工作流程入门 单细胞RNA测序(scRNA-seq)细胞分离与…

logistic分叉图

MATLAB代码 % 初始化 r_min 2.5; % 参数r的起始值 r_max 4.0; % 参数r的结束值 r_step 0.001; % 参数r的步长 r_values r_min:r_step:r_max; % 参数r的范围% 分岔图数据初始化 num_iterations 1000; % 总迭代次数 num_last_points 100; % 用于绘图的最后的这些…

MySQL Innodb 中的排它锁、共享锁、意向锁、记录锁、间隙锁、临键锁、死锁讲解

一、MySQL 锁机制 MySQL作为流行的关系型数据库管理系统之一&#xff0c;在处理并发访问时&#xff0c;锁起着至关重要的作用。锁的使用可以确保数据的完整性&#xff0c;同时也是实现并发操作的必备工具。在MySQL Innodb 引擎中锁可以理解为两个方向的东西&#xff0c;一个是…

stm32移植嵌入式数据库FlashDB

本次实验的程序链接stm32f103FlashDB嵌入式数据库程序资源-CSDN文库 一、介绍 FlashDB 是一款超轻量级的嵌入式数据库&#xff0c;专注于提供嵌入式产品的数据存储方案。与传统的基于文件系统的数据库不同&#xff0c;FlashDB 结合了 Flash 的特性&#xff0c;具有较强的性能…

白话微机:10.民风淳朴的MCS-51小镇(小镇方言:汇编)

1. 基本结构与周期 MCS-51系列单片机属于8位单片机用 8051单片机构成最小应用系统时&#xff0c;只要将单片机接上时钟电路和复位电路即可MCS-51单片机由CPU、存储器和I/O三部分组成CPU是指&#xff1a;运算器和控制器 “PC CPU 3BUS RAM I/O” 在执行指令过程中&#xff…

cdn加速与ssl加速

cdn CDN的全称是Content Delivery Network&#xff0c;即内容分发网络。其基本思路是尽可能避开互联网上有可能影响数据传输速度和稳定性的瓶颈和环节&#xff0c;使内容传输的更快、更稳定。 简单的来说&#xff0c;就是把原服务器上数据复制到其他服务器上&#xff0c;用户访…

论文笔记:SmartPlay : A Benchmark for LLMs as Intelligent Agents

iclr 2024 reviewer评分 5688 引入了 SmartPlay&#xff0c;一种从 6 种不同游戏中提取的基准 衡量LLM作为智能体的能力 1 智能代理所需的能力 论文借鉴游戏设计的概念&#xff0c;确定了智能LLM代理的九项关键能力&#xff0c;并为每项能力确定了多个等级&#xff1a; 长文…

Python杂记--使用asyncio构建HTTP代理服务器

Python杂记--使用asyncio构建HTTP代理服务器 引言基础知识代码实现 引言 本文将介绍 HTTP 代理的基本原理&#xff0c;并带领读者构建一个自己的 HTTP 代理服务器。代码中不会涉及到任何第三方库&#xff0c;全部由 asyncio 实现&#xff0c;性能优秀&#xff0c;安全可靠。 基…

[管理者与领导者-163] :团队管理 - 高效执行力 -1- 高效沟通的架构、关键问题、注意事项

目录 前言&#xff1a;沟通是管理者实施管理最重要的工作 一、人与人沟通模型 1.1 模型 1.2 完整过程 1.3 发送和接受方式 1.4 传输 1.5 关于编码与解码 1.6 反馈 1.7 沟通中常见问题 二、管理者如何提高沟通的效率 2.1 为什么管理者布置任务后&#xff0c;总有人…

MYSQL执行过程和顺序详解

一、前言 1.1、说明 就MySQL在执行过程、sql执行顺序&#xff0c;以及一些相关关键字的注意点方面的学习分享内容。 在参考文章的基础上&#xff0c;会增加自己的理解、看法&#xff0c;希望本文章能够在您的学习中提供帮助。 如有错误的地方&#xff0c;欢迎指出纠错&…

Web端Excel的导入导出Demo

&#x1f4da;目录 &#x1f4da;简介:✨代码的构建&#xff1a;&#x1f4ad;Web端接口Excel操作&#x1f680;下载接口&#x1f680;导入读取数据接口 &#x1f3e1;本地Excel文件操作⚡导出数据&#x1f308;导入读取数据 &#x1f4da;简介: 使用阿里巴巴开源组件Easy Exce…

在Windows上安装Go编译器并配置Golang开发环境

文章目录 1、安装Go语言编译程序1.1、下载GoLang编译器1.2、安装GoLang编译器 2、配置Golang IDE运行环境2.1、配置GO编译器2.1.1、GOROOT 概述2.1.2、GOROOT 作用2.1.2、配置 GOROOT 2.2、配置GO依赖管理2.2.1、Module管理依赖2.2.2、GOPATH 管理依赖 2.3、运行GO程序2.3.1、创…

OpenCV 学习笔记2 C++

1.图像直方图 直方图&#xff08;Histogram&#xff09;是图像处理中常用的工具&#xff0c;它表示图像中每个像素强度值的分布情况。在OpenCV中&#xff0c;可以使用 cv::calcHist 函数来计算图像的直方图。 图像直方图是一种展示图像像素强度分布的统计图表。它显示了图像中…

Eclipse+Java+Swing实现图书信息管理系统-TXT存储信息

一、系统介绍 1.开发环境 操作系统&#xff1a;Win10 开发工具 &#xff1a;Eclipse2021 JDK版本&#xff1a;jdk1.8 存储方式&#xff1a;Txt文件存储 2.技术选型 JavaSwingTxt 3.功能模块 4.工程结构 5.系统功能 1.系统登录 管理员可以登录系统 2.查看图书 管理员…

Python数据分析案例42——基于Attention-BiGRU的时间序列数据预测

承接上一篇的学术缝合&#xff0c;排列组合模型&#xff0c;本次继续缝合模型演示。 Python数据分析案例41——基于CNN-BiLSTM的沪深300收盘价预测-CSDN博客 案例背景 虽然我自己基于各种循环神经网络做时间序列的预测已经做烂了.....但是还是会有很多刚读研究生或者是别的领…

Django处理枚举(枚举模型)以及source的使用

Django处理枚举-枚举模型 1、定义模型类、序列化器类2、对上面这些场景使用source参数3、支持连表查询4、自定义序列化输出方法5、案例5 1、定义模型类、序列化器类 定义模型类models.py&#xff1b;项目模型类、接口模型类、用例模型类 from django.db import modelsclass T…

【linux深入剖析】深入理解软硬链接 | 动静态库的制作以及使用

&#x1f341;你好&#xff0c;我是 RO-BERRY &#x1f4d7; 致力于C、C、数据结构、TCP/IP、数据库等等一系列知识 &#x1f384;感谢你的陪伴与支持 &#xff0c;故事既有了开头&#xff0c;就要画上一个完美的句号&#xff0c;让我们一起加油 目录 1.理解软硬链接1.1 操作观…