【机器学习300问】67、均方误差与交叉熵误差,两种损失函数的区别?

news2024/11/17 15:34:30

一、均方误差(Mean Squared Error, MSE)

        假设你是一个教练,在指导学生射箭。每次射箭后,你可以测量子弹的落点距离靶心的差距(误差)。MSE就像是计算所以射击误差的平方后的平均值。它强调了每一次偏离靶心的大小。

(1)定义与公式

        均方误差损失函数是衡量模型预测值和实际值差异的常用指标,定义为预测值与真实值之间差异的平方和的平均值。

        均方误差公式如下:

 L(y, \hat{y}) = \frac{1}{n} \sum_{i=1}^{n}(y_i - \hat{y_i})^2

        其中,y_i是真实的目标值,\hat y_i是模型预测的值,n是样本数量。

        均方误差损失对大的误差“惩罚”更严重,因为它将误差平方,这意味着大误差的影响会被放大。

(2)导数

        MSE的导数用于指导模型参数更新的方向和步长。为了求导方便,可以给损失函数乘上个二分之一:

L(y, \hat{y}) = \frac{1}{2n} \sum_{i=1}^{n}(y_i - \hat{y_i})^2

        对于单个样本来说,参数\theta求偏导得到的公式如下:

\frac{dL}{d\hat{y_i}} = 2(y_i - \hat{y_i})

\frac{dL}{d\theta _j} =\frac{dL}{d\hat{y_i}}\frac{d\hat{y_i}}{d\theta _j} = -(y_i - \hat{y_i})\frac{d\hat{y_i}}{d\theta _j}

        这意味着对于每一个参数,模型会沿着误差方向的反方向进行调整,调整幅度与误差大小和模型输出对参数的敏感度(偏导)成正比。


二、交叉熵误差(Cross-Entropy Loss)

        假设你正在教一群学生区分猫和狗的图片。每次他们判断时,你就会根据他们回答的“是猫”或“是狗”的概率与实际标签对比,给他们打分。交叉熵就像是衡量他们的答案与正确答案之间的“信息距离”,误差分数越低表示他们的判断越接近真相。

(1)定义与公式

        交叉熵损失是由信息论中的交叉熵概念发展而来的,它衡量的是在给定真实标签的条件下,模型预测概率分布与真实的概率分布之间的差异。当预测值与实际标签越接近时,交叉熵损失越小。

        以二分类为例交叉熵误差的公式:

L(y, \hat{y}) = -\frac{1}{n} \sum_{i=1}^{n}[y_i \log(\hat{y_i}) + (1 - y_i) \log(1 - \hat{y_i})]

        其中的y_i是真实的目标值,\hat y_i是模型预测的值,n是样本数量。在二分类问题中y \in \{0,1\},而预测值\hat y_i也可以看成是模型预测的相应类别概率p。所以有些公式也写成(下面公式只列举了一个样本,没有相加起来求平均):

L(y,p)=-ylog(p)-(1-y)log(1-p)

(2)导数

        交叉熵损失的导数有助于指导模型调整其输出概率。对\hat y_i求导公式如下:

\frac{dL}{d\hat{y_i}} = \frac{-y_i}{\hat{y_i}} + \frac{1-y_i}{1-\hat{y_i}}

        导数告诉模型,当预测概率p低于真实标签y时,应增加输出概率,反之若预测概率过高则应降低。调整幅度同样取决于输出对参数的敏感度。


三、两者使用场景的区别

  • 均方误差用于回归问题:当目标是预测连续数值型变量时,如预测房价、气温、销售额、股票价格等,均方损失是最常用的损失函数。这类任务要求模型输出一个具体的数值,而非离散的类别标签。
  • 交叉熵误差用于分类问题:当目标是预测离散的类别标签时,尤其是对于多类别的分类任务(包括二分类),交叉熵损失是首选的损失函数。例如,图像分类(区分猫、狗、鸟等)、文本分类(判断新闻主题、情感极性)、疾病诊断(判断患者是否患病)等。

        当处理连续数值预测的回归任务时,优先考虑使用均方损失(MSE)。而当面对离散类别标签的分类任务时,交叉熵损失(CE Loss)通常是更合适的选择。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1594928.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

CSS 实现视差滚动效果

一、是什么 视差滚动(Parallax Scrolling)是指多层背景以不同的速度移动,形成立体的运动效果,带来非常出色的视觉体验 我们可以把网页解刨成:背景层、内容层、悬浮层 当滚动鼠标滑轮的时候,各个图层以不…

python中的列表、元组、字典、集合(元组篇)

数据类型定义符号访问元素是否可变是否重复是否有序列表 [ ]索引可变可重复有序元组()索引不可变可重复有序字典{key:value}键可变可重复无序集合{ }可变不可重复无序 在形式上,元组的所有元素放在一对圆括号中,元素之…

发布 Chrome/Edge浏览器extension扩展到应用商店

Chrom Extension发布流程 创建和发布自定义 Chrome 应用和扩展程序:https://support.google.com/chrome/a/answer/2714278?hlzh-Hans 在 Chrome 应用商店中发布:https://developer.chrome.com/docs/webstore/publish?hlzh-cn 注册开发者帐号&#…

C# Solidworks二次开发:相机访问相关API详解

大家好,今天要介绍的API为相机相关的API,这篇文章比较适合女孩子,学会了相机就会拍照了,哈哈。 下面是要介绍的API: (1)第一个为GetFocalDistance,这个API的含义为获取相机的焦距,…

OLTP 与 OLAP 系统说明对比和大数据经典架构 Lambda 和 Kappa 说明对比——解读大数据架构(五)

文章目录 前言OLTP 和 OLAPSMP 和 MPPlambda 架构Kappa 架构 前言 本文我们将研究不同类型的大数据架构设计,将讨论 OLTP 和 OLAP 的系统设计,以及有效处理数据的策略包括 SMP 和 MPP 等概念。然后我们将了解经典的 Lambda 架构和 Kappa 架构。 OLTP …

微信小程序 发送消息 Token校验失败,请检查确认

如上图,文档中说的是 开发者通过检验 signature 对请求进行校验(下面有校验方式)。若确认此次 GET 请求来自微信服务器,请原样返回 echostr 参数内容,则接入生效,成为开发者成功,否则接入失败。…

bugku-web-decrypt

这里的提示解密后没有什么意义 这里下载文件包 得到一个index.php文件 得到代码 <?php function encrypt($data,$key) {$key md5(ISCC);$x 0;$len strlen($data);$klen strlen($key);for ($i0; $i < $len; $i) { if ($x $klen){$x 0;}$char . $key[$x];$x1;}for…

STM32之DHT11温湿度传感器

目录 一 DHT11温湿度传感器简介 1.1 传感器特点 1.2 传感器特性 1.3 传感器引脚说明 二 测量原理及方法 2.1 典型应用电路 2.2 单线制串行简介 2.2.1 串行接口 (单线双向) 2.2.2 数据示例 2.3 通信时序 三 单片机简介 3.1 STM32F103C8T6最小系统板 四 接线说明 …

【系统分析师】计算机网络

文章目录 1、TCP/IP协议族1.1 DHCP协议1.2 DNS协议1.3网络故障诊断 2、网路规划与设计2.1逻辑网络设计2.2物理网络设计2.3 分层设计 3、网络接入3.1 接入方式3.2 IPv6地址 4、综合布线技术5、物联网5.1物联网概念与分层5.2 物联网关键技术 6、云计算7、网络存储技术&#xff08…

Unity 中消息提醒框

Tooltip 用于ui布局 using System.Collections; using System.Collections.Generic; using UnityEngine; using TMPro; using UnityEngine.UI;[ExecuteInEditMode()] // 可以在编辑模式下运行public class Tooltip : MonoBehaviour {public TMP_Text header; // 头部文本publi…

【opencv】示例-stiching_detailed.cpp 使用OpenCV进行图像拼接的整体流程

#include <iostream> // 引入输入输出流库 #include <fstream> // 引入文件流库&#xff0c;用于文件输入输出 #include <string> // 引入字符串库 #include "opencv2/opencv_modules.hpp" // 引入OpenCV模块 #include <opencv2/core/utility.h…

Spring Boot(二)— 自定义Spring Boot Starter

在Spring Boot中&#xff0c;自定义Spring Boot Starter是一个常见且强大的功能&#xff0c;它允许开发者为特定的功能或库创建自己的自动配置&#xff0c;从而简化集成过程。 1 前置知识 Spring Boot的事件为应用的启动和关闭提供了详细的上下文信息&#xff0c;使得开发者能…

【脚本】多功能Ubuntu临时授予用户sudo权限管理工具

转载请注明出处&#xff1a;小锋学长生活大爆炸[xfxuezhagn.cn] 设计原理和初衷可以看这里&#xff1a;【技巧】Ubuntu临时授予用户sudo权限&#xff0c;并在一定时间后自动撤销_ubuntu jianshao sudo-CSDN博客文章浏览阅读404次。非常实用_ubuntu jianshao sudohttps://blog.c…

mysql dll文件的缺失和Can‘t connect to MySQL server on ‘localhost‘ (10061)

个人笔记&#xff08;整理不易&#xff0c;有帮助&#xff0c;收藏点赞评论&#xff0c;爱你们&#xff01;&#xff01;&#xff01;你的支持是我写作的动力&#xff09; 笔记目录&#xff1a;学习笔记目录_pytest和unittest、airtest_weixin_42717928的博客-CSDN博客 个人随笔…

系统架构最佳实践 -- API网关架构设计

目录 1.什么是API网关&#xff1f; 2.API网关的核心功能 3.架构设计原则 4.API网关的实现方式 5.常见的API网关工具和框架 6.实际案例分析 API网关是现代微服务架构中的重要组件&#xff0c;它充当了前端和后端微服务之间的中介。本文将介绍API网关的架构设计原则和实现方…

Textarea的常用属性thymeleaf

文章目录 textareathymeleaf1.基础使用2.代码块的切换3.链接表达式1&#xff09;范例 4.前后端5.遍历1.th:each2.th:switch3.添加属性 组件替换 每周总结 textarea -webkit-scrollbar&#xff1a;width&#xff1a;0&#xff1b;让滚动条隐藏&#xff0c;宽度为0 resize&#x…

RUST语言字符串与字符数组操作

1.字符串转换为字符数组: //分配内存存储HellWorld并使用s指针指向该地址let mut s String::from("HelloWorld");println!("s> {}",s);//转换字符串为字符数组let bs.as_bytes(); 2.遍历字符数组 //遍历字符数组for c in b {println!("char of…

C语言简单的数据结构:单链表的有关算法题(2)

题目&#xff1a; 4. 单链表相关经典算法OJ题3&#xff1a;合并两个有序链表5. 循环链表经典应⽤-环形链表的约瑟夫问题6. 单链表相关经典算法OJ题5&#xff1a;分割链表 接着我们介绍后面的三道题&#xff0c;虽然代码变多了但我们的思路更加通顺了 4. 单链表相关经典算法OJ题…

DC-5渗透测试复现

DC-5渗透测试复现 目的&#xff1a; 获取最高权限以及5个flag 过程&#xff1a; 信息打点-文件包含漏洞-弹shell- scren-4.0.5提权 环境&#xff1a; 攻击机&#xff1a;kali(192.168.85.136) 靶机&#xff1a;DC_3(192.168.85.134) 复现&#xff1a; 一.信息收集 nma…

MES生产管理系统:私有云、公有云与本地化部署的比较分析

随着信息技术的迅猛发展&#xff0c;云计算作为一种新兴的技术服务模式&#xff0c;已经深入渗透到企业的日常运营中。在众多部署方式中&#xff0c;私有云、公有云和本地化部署是三种最为常见的选择。它们各自具有独特的特点和适用场景&#xff0c;并在不同程度上影响着企业的…