数模 线性规划模型理论与实践

news2024/11/17 19:38:31

线性规划模型理论与实践

1.1 线性规划问题

  • 在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济效益的问题。此类问题构成了运筹学的一个重要分支一数学规划,而线性规划(Linear Programming 简记LP)则是数学规划的一个重要分支。
  • 自从1947年 G . B . D a n t z i g G.B.Dantzig G.B.Dantzig提出求解线性规划的单纯形方法以来,线性规划在理论上趋向成熟,在实用中日益广泛与深入。特别是在计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性规划的适用领域更为广泛了,已成为现代管理中经常采用的基本方法之一。

1.1.1 线性规划的实例与定义

1.实例:某机床厂生产甲、乙两种机床,每台销售后的利润分别为 4千元与3千元。生产甲机床需用4、B机器加工,加工时间分别为每台2小时和1小时;生产乙机床需用A、B、C三种机器加工,加工时间为每台各一小时。若每天可用于加工的机器时数分别为A机器10小时、B机器8小时和C机器7小时,问该厂应生产甲、乙机床各几台,才能使总利润最大?

上述问题的数学模型:设该厂生产 x 1 x_1 x1台甲机床和 x 2 x_2 x2台乙机床时总利润最大,则 x 1 , x 2 x_1,x_2 x1,x2应满足
m a x    z = 4 x 1 + 3 x 2 (1.1) max\ \ z=4x_1+3x_2\tag{1.1} max  z=4x1+3x2(1.1)

{ 2 x 1 + x 2 ≤ 10 x 1 + x 2 ≤ 8 x 2 ≤ 7 x 1 , x 2 ≥ 0 (1.2) \begin{cases} 2x_1+x_2\le10 \\ x_1+x_2\le8\\ x_2\le7\\ x_1,x_2\ge0 \end{cases}\tag{1.2} 2x1+x210x1+x28x27x1,x20(1.2)

变量 x 1 , x 2 x_1,x_2 x1,x2称之为决策变量,(1.1)式被称为问题的目标函数,(1.2)中的几个不等式是问题的约束条件,记为s.t(即subject to)。

2.定义:

  • 目标函数及约束条件均为线性函数,故被称为线性规划问题。线性规划问题是在一组线性约束条件的限制下,求一线性目标函数最大或最小的问题。
  • 在解决实际问题时,把问题归结成一个线性规划数学模型是很重要的一步,往往也是很困难的一步,模型建立得是否恰当,直接影响到求解。而选适当的决策变量,是我们建立有效模型的关键之一。

1.1.2 线性规划问题的解的概念

1. M a t l a b Matlab Matlab中求解线性规划的基本公式:下式一般求最小值,要求最大值在目标函数前加一个负号即可
m i n x    c T x \underset{x}{min}\ \ c^Tx xmin  cTx

s . t .    { A x ≤ b A e q ⋅ x = b e q l b ≤ x ≤ u b s.t.\ \ \begin{cases} Ax\le b \\ Aeq\cdot x = beq\\ lb\le x\le ub \end{cases} s.t.   AxbAeqx=beqlbxub

其中c和x为n维向量, A 、 A e q A、Aeq AAeq为适当维数的矩阵, b 、 b e q b、beq bbeq为适当维数的列向量。

  • 第一个式子是目标函数的简化形式;
  • 第二个式子是所有不等式的集合;
  • 第三个式子是所有等的集合;
  • 第四个式子是决策变量的取值范围。

2.一般线性规划问题的(数学)标准型为:
m a x    z = ∑ j = 1 n c j x j (1.3) max\ \ z=\sum_{j=1}^nc_jx_j\tag{1.3} max  z=j=1ncjxj(1.3)

s . t .    { ∑ j = 1 n a i j x j = b i     i = 1 , 2 , 3 , . . . , m x j ≥ 0     j = 1 , 2 , 3 , . . . , n (1.4) s.t.\ \ \begin{cases} \overset{n}{\underset{j=1}{\sum}} a_{ij}x_j=b_i\ \ \ i=1,2,3,...,m \\ \\ x_j\ge0\ \ \ j=1,2,3,...,n \end{cases}\tag{1.4} s.t.   j=1naijxj=bi   i=1,2,3,...,mxj0   j=1,2,3,...,n(1.4)

3.基础概念:

  • 可行解:满足约束条件(1.4)的解 x = [ x 1 , x n ] T x=[x_1,x_n]^T x=[x1,xn]T,称为线性规划问题的可行解。
  • 最优解:使目标函数(1.3)达到最大值的可行解叫最优解。
  • 可行域:所有可行解构成的集合称为问题的可行域,记为R。

1.1.3 线性规划的 M a t l a b Matlab Matlab标准形式及软件求解

1.线性规划的目标函数可以是求最大值,也可以是求最小值,约束条件的不等号可以是小于号也可以是大于号。为了避免这种形式多样性带来的不便, M a t l a b Matlab Matlab中规定线性规划的标准形式为:
m i n x    c T x \underset{x}{min}\ \ c^Tx xmin  cTx

s . t .    { A x ≤ b A e q ⋅ x = b e q l b ≤ x ≤ u b s.t.\ \ \begin{cases} Ax\le b \\ Aeq\cdot x = beq\\ lb\le x\le ub \end{cases} s.t.   AxbAeqx=beqlbxub

其中, c , x , b , b e q , l b , u b c,x,b,beq,lb,ub c,x,b,beq,lb,ub为列向量, f f f称为价值向量, b b b称为资源向量, A 、 A e q A、Aeq AAeq为矩阵。

2. M a t l a b Matlab Matlab 中求解线性规划的命令为:

[x,fval]=linprog(c,A,b)
[x,fval]=linprog(c,A,b,Aeq,beq)
[x,fval]= linprog(c,A,b,Aeq,beq,lb,ub)

其中 x x x返回的是决策向量的取值, f v a l fval fval返回的是目标函数的最优值, c c c为价值向量, A , b A,b A,b对应的是线性不等式约束, A e q , b e q Aeq,beq Aeq,beq对应的是

线性等式约束, l b lb lb u b ub ub分别对应的是决策向量的下界向量和上界向量。

3.实例速递:( M a t l a b Matlab Matlab只能求最小值,最大值不是标准形式)

其中,所有的系数都加上了一个负号是因为在用 M a t l a b Matlab Matlab求解最大值。

1.1.4 可以转化为线性规划问题------构造

1.例题:

1.2 投资的收益和风险

1.2.1 问题提出

1.2.2 符号规定和基本假设

1.符号规定:

2.基本假设:

  • 投资数额 M M M相当大,为了便于计算,假设 M = 1 M=1 M=1
  • 投资越分散,总的风险越小;
  • 总体风险用投资项目 S i S_i Si中最大的一个风险来度量;
  • n + 1 n+1 n+1种资产 S i S_i Si之间是相互独立的;
  • 在投资的这一期间内, r i , p i , q i r_i,p_i,q_i ri,pi,qi为定值,不受意外因素影响;
  • 净收益和总体风险只受 r i , p i , q i r_i,p_i,q_i ri,pi,qi​影响,不受其它因素干扰。

1.2.3 模型的分析与建立

1.总体风险用所投资的 S i S_i Si中最大的一个风险来衡量,即
m a x { q i x i ∣ i = 1 , 2 , L , n } max\{q_ix_i|i=1,2,L,n\} max{qixii=1,2,L,n}
2.购买 S i ( i = 1 , L , n ) S_i(i=1,L,n) Si(i=1,L,n)所付交易费是一个分段函数,即
交易费 = { p i x i ,     x i ≥ u i p i u i ,     x i ≤ u i 交易费= \begin{cases} p_ix_i,\ \ \ x_i\ge u_i \\ p_iu_i,\ \ \ x_i\le u_i \end{cases} 交易费={pixi,   xiuipiui,   xiui
而题目i所给的定值 u i u_i ui(单位:元)相对总投资 M M M很少, p i u i p_iu_i piui更小,这样购买 S i S_i Si的净收益可以简化为 ( r i − p i ) x i (r_i-p_i)x_i (ripi)xi

3.要使净收益尽可能大,总体风险尽可能小,这是一个多目标规划模型。

目标函数为:
{ m a x   ∑ i = 0 n ( r i − p i ) x i m i n    m a x { q i x i } ( ) \begin{cases} max\ \overset{n}{\underset{i=0}{\sum}}(r_i-p_i)x_i\\ min\ \ max\{q_ix_i\}() \end{cases} max i=0n(ripi)ximin  max{qixi}()
约束条件为:
{ ∑ i = 0 n ( 1 + p i ) x i = M x i ≥ 0 ,    i = 0 , 1 , . . . , n \begin{cases} \overset{n}{\underset{i=0}{\sum}}(1+p_i)x_i=M\\ x_i\ge0,\ \ i=0,1,...,n \end{cases} i=0n(1+pi)xi=Mxi0,  i=0,1,...,n
这是一个多模规划,不仅要找到净收益的最大值,还要找到风险评估的最小值,所以我们要把多模规划化简到单目标线性规划。

4.一共有三种方法:

①在实际投资中,投资者承受的风险程度不一样,若给定一个界限a,使最大的一个风险 q i x i M ≤ a \dfrac{q_ix_i}{M}\le a Mqixia,可以找到相应的投资方案,这样就把多目标规划变成一个目标的线性规划。

  • 模型一:固定风险水平,优化收益

  • 模型二:固定盈利水平,极小化风险

②投资者在权衡资产风险和预期收益两方面时,希望选择一个令自己满意的投资组合。因此对风险、收益分别赋予权重s(0<s≤1)和(1-s),s称为投资偏好系数。

  • 模型三:综合考虑

1.2.4 模型求解

1.以模型一求解为例:

由于a是任意给定的风险度,到底怎样没有一个准则,不同的投资者有不同的风险度。我们从a=0开始,以步长 Δ a = 0.001 \Delta a=0.001 Δa=0.001进行循环搜索,编制程序如下:

通过 M a t l a b Matlab Matlab运行可以得到下图所示的结果:

通过上图可以看出:

  • 风险大,收益也大;
  • 当投资越分散时,投资者承担的风险越小,这与题意一致。冒险的投资者会出现集中投资的情况,保守的投资者则尽量分散投资;
  • 在a=0.006附近有一个转折点,在这一点左边,风险增加很少时,利润增长很快。在这一点右边,风险增加很大时,利润增长很缓慢,所以对于风险和收益没有特殊偏好的投资者来说,应该选择曲线的转折点作为最优投资组合,大约是a=0.6%,Q=20%,所对应投资方案为:
    风险度a=0.006,收益Q=0.2019, x 0 = 0 x_0=0 x0=0 x 1 = 0.24 x_1=0.24 x1=0.24 x 2 = 0.4 x_2=0.4 x2=0.4 x 3 = 0.1091 x_3= 0.1091 x3=0.1091 x 4 = 0.2212 x_4= 0.2212 x4=0.2212

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1594879.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

深度学习学习日记4.14 数据增强 Unet网络部分

数据增强 transforms.Compose([&#xff1a;这表示创建一个转换组合&#xff0c;将多个数据转换操作串联在一起 transforms.RandomHorizontalFlip()&#xff1a;这个操作是随机水平翻转图像&#xff0c;以增加数据的多样性。它以一定的概率随机地水平翻转输入的图像。 transfo…

系统架构最佳实践 -- 金融企业的资损防控

一、资损产生的原因 由于支付行业的特殊性与复杂性&#xff08;主要处理资金相关业务&#xff09;&#xff0c;支付公司处于资损的风口浪尖&#xff0c;最容易发生资损&#xff0c;可以说资损风险无处不在。 常规来说&#xff0c;资损原因主要可以分为以下三类&#xff1a; 1…

Linux设备驱动开发-字符设备

阅读引言&#xff1a; 从linux文件的种类、字符设备的创建、设备号、申请设备号、cdev对象和字符设备的对应关系、应用层调用到我们编写的设备驱动方法合集的流程。 目录 一、Linux文件的种类 二、Linux对设备的分类 三、驱动程序如何向应用层提供接口 四、Linux中设备的划…

微服务之LoadBalancer负载均衡服务调用

一、概述 1.1什么是负载均衡 LB&#xff0c;既负载均衡&#xff08;Load Balancer&#xff09;,是高并发、高可用系统必不可少的关键组件&#xff0c;其目标是尽力将网络流量平均分发到多个服务器上&#xff0c;以提高系统整体的响应速度和可用性。 负载均衡的主要作用 高并发…

华为机考入门python3--(15)牛客15-求int型正整数在内存中存储时1的个数

分类&#xff1a;二进制 知识点&#xff1a; int转二进制 binary bin(n)[2:] 题目来自【牛客】 def count_ones_in_binary(n): # 将输入的整数转换为二进制字符串 # bin(n)为0b11011binary bin(n)[2:]# 初始化计数器为0 count 0 # 遍历二进制字符串的每一位 fo…

2024年大唐杯备考

努力更新中…… 第一章 网络架构和组网部署 1.1 5G的网络整体架构 5G网络中的中传、回传、前传&#xff08;这里属于承载网的概念&#xff09; CU和DU之间是中传 BBU和5GC之间是回传 BBU和AAU之间是前传&#xff08;这个好记&#xff09; 这里竟然还藏了MEC&#xff08;…

YOLTV8 — 大尺度图像目标检测框架(欢迎star)

YOLTV8 — 大尺度图像目标检测框架【ABCnutter/YOLTV8: &#x1f680;】 针对大尺度图像&#xff08;如遥感影像、大尺度工业检测图像等&#xff09;&#xff0c;由于设备的限制&#xff0c;无法利用图像直接进行模型训练。将图像裁剪至小尺度进行训练&#xff0c;再将训练结果…

使用Python的Pillow库进行图像处理书法参赛作品

介绍&#xff1a; 在计算机视觉和图像处理领域&#xff0c;Python是一种强大而流行的编程语言。它提供了许多优秀的库和工具&#xff0c;使得图像处理任务变得轻松和高效。本文将介绍如何使用Python的wxPython和Pillow库来选择JPEG图像文件&#xff0c;并对选中的图像进行调整和…

STM32常见调试工具介绍

STM32的常见调试工具主要包括ST-LINK、USB转TTL、USB转485以及USB转CAN。这些工具在嵌入式系统开发、调试以及通信中发挥着重要的作用。 1.ST-LINK&#xff1a; ST-LINK是STMicroelectronics公司专为其STM32系列微控制器开发的调试和编程工具。既能仿真也能将编译好的程序下载…

python应用-os库操作目录

python自带的os模块提供了许多与操作系统交互的函数&#xff0c;适配多种操作系统&#xff0c;比如windows&#xff0c;mac&#xff0c;linux等&#xff0c;比如常用路径操作、进程管理、环境参数等都可通过os模块实现。 以下是自带的os.py中的前面一部分代码。 第一个红框中主…

asp.net core 网页接入微信扫码登录

创建微信开放平台账号&#xff0c;然后创建网页应用 获取appid和appsecret 前端使用的vue&#xff0c;安装插件vue-wxlogin 调用代码 <wxlogin :appid"appId" :scope"scope" :redirect_uri"redirect_uri"></wxlogin> <scri…

Qt快速入门(Opencv小案例之人脸识别)

Qt快速入门&#xff08;Opencv小案例之人脸识别&#xff09; 编译出错记录 背景 因为主要使用qt&#xff0c;并且官网下载的win版本的编译好的opencv默认是vc的&#xff0c;所以我们需要自己下载opencv的源码使用mingw自行编译&#xff0c;我直接使用的vscode。 报错 报错…

LabVIEW直流稳定电源自动化校准系统

LabVIEW直流稳定电源自动化校准系统 直流稳定电源正向着智能化、高精度、多通道、宽量程的方向发展。基于LabVIEW开发环境&#xff0c;设计并实现了一种直流稳定电源自动化校准系统&#xff0c;以提升校准过程的整体效能&#xff0c;实现自动化设备替代人工进行电源校准工作。…

YOLOv8 测试 5:Linux 中 Docker 部署 YOLOv8,Python 封装 API 接口,base64 图片处理

一、前言 记录时间 [2024-4-14] 系列文章简摘&#xff1a; Docker 学习笔记&#xff08;二&#xff09;&#xff1a;在 Linux 中部署 Docker&#xff08;Centos7 下安装 docker、环境配置&#xff0c;以及镜像简单使用&#xff09; API 接口简单使用&#xff08;二&#xff09;…

对常见FTP客户端/服务器的调查与分析

前言 主要是想看看常见的服务器和客户端是如何实现协议中要求的功能的&#xff0c;。 比如RF959要求的记录结构&#xff08;Record Structure&#xff09;、页结构&#xff08;Page Structure&#xff09;、Block Mode、Compress Mode&#xff0c;看起来就很抽象。 实测发现…

springBoot+vue编程中使用mybatis-plus遇到的问题

mybatis-plus中遇到的问题Code Companion Servlet.service() for servlet [dispatcherServlet] in context with path [] threw exception [Request processing failed; nested exception is org.apache.ibatis.binding.BindingException: Invalid bound statement (not found)…

专题十三、预处理器

预处理器 1. 预处理器的工作原理2. 预处理指令3. 宏定义3.1 简单的宏3.2 带参数的宏3.3 # 运算符3.4 ## 运算符3.5 宏的通用属性3.6 宏定义中的圆括号3.7 创建较长的宏3.8 预定义宏3.9 C99 中新增的预定义宏3.10 空的宏参数3.11 参数个数可变的宏3.12 __func__ 标识符 4. 条件编…

SMS垃圾短信识别项目

注意&#xff1a;本文引用自专业人工智能社区Venus AI 更多AI知识请参考原站 &#xff08;[www.aideeplearning.cn]&#xff09; 项目背景 随着数字通信的快速发展&#xff0c;垃圾短信成为了一个普遍而烦人的问题。这些不请自来的消息不仅打扰了我们的日常生活&#xff0c;…

嵌入式单片机 TTL电平、232电平、485电平的区别和联系

一、简介 TTL、232和485是常见的串口通信标准&#xff0c;它们在电平和通信方式上有所不同&#xff0c; ①一般情况下TTL电平应用于单片机外设&#xff0c;属于MCU/CPU等片外外设&#xff1b; ②232/485电平应用于产品整体对外的接口&#xff0c;一般是片外TTL串口转232/485…

React 19 的新增功能:Action Hooks

React 是前端开发领域最流行的框架之一。我喜欢 React 是因为它背后的团队和社区对它的热情。当社区提出新功能和改进的需求时&#xff0c;团队会倾听&#xff0c;React 的未来是令人兴奋和有趣的。 让我们来看一下 React 19 中令开发人员提升开发效率的新特性。对于每个钩子&…