文章目录
- 10.1 状态概述
- 10.2 状态分类
- 1)托管状态(Managed State)和原始状态(Raw State)
- 2)算子状态(Operator State)和按键分区状态(Keyed State)
- 10.3 按键分区状态(Keyed State)
- 1. 值状态(ValueState)
- 2. 列表状态(ListState)
- 3. Map状态(MapState)
- 4. 归约状态(ReducingState)
- 5. 聚合状态(AggregatingState)
- 6. 状态生存时间(TTL)
- 10.4 算子状态
- 1. 列表状态(ListState)
- 2. 联合列表状态(UnionListState)
- 3. 广播状态(BroadcastState)
- 10.5 状态后端
- 1. 状态后端的分类(HashMapStateBackend/RocksDB)
- 2. 如何选择正确的状态后端
- 3. 状态后端的配置
10.1 状态概述
10.2 状态分类
1)托管状态(Managed State)和原始状态(Raw State)
Flink的状态有两种:托管状态(Managed State)和原始状态(Raw State)。托管状态就是由Flink统一管理的,状态的存储访问、故障恢复和重组等一系列问题都由Flink实现,我们只要调接口就可以;而原始状态则是自定义的,相当于就是开辟了一块内存,需要我们自己管理,实现状态的序列化和故障恢复。
通常我们采用Flink托管状态来实现需求。
2)算子状态(Operator State)和按键分区状态(Keyed State)
接下来我们的重点就是托管状态(Managed State)。
我们知道在Flink中,一个算子任务会按照并行度分为多个并行子任务执行,而不同的子任务会占据不同的任务槽(task slot)。由于不同的slot在计算资源上是物理隔离的,所以Flink能管理的状态在并行任务间是无法共享的,每个状态只能针对当前子任务的实例有效。
而很多有状态的操作(比如聚合、窗口)都是要先做keyBy进行按键分区的。按键分区之后,任务所进行的所有计算都应该只针对当前key有效,所以状态也应该按照key彼此隔离。在这种情况下,状态的访问方式又会有所不同。
基于这样的想法,我们又可以将托管状态分为两类:算子状态和按键分区状态。
另外,也可以通过富函数类(Rich Function)来自定义Keyed State,所以只要提供了富函数类接口的算子,也都可以使用Keyed State。所以即使是map、filter这样无状态的基本转换算子,我们也可以通过富函数类给它们“追加”Keyed State。比如RichMapFunction、RichFilterFunction。在富函数中,我们可以调用.getRuntimeContext()获取当前的运行时上下文(RuntimeContext),进而获取到访问状态的句柄;这种富函数中自定义的状态也是Keyed State。从这个角度讲,Flink中所有的算子都可以是有状态的。
无论是Keyed State还是Operator State,它们都是在本地实例上维护的,也就是说每个并行子任务维护着对应的状态,算子的子任务之间状态不共享。
10.3 按键分区状态(Keyed State)
按键分区状态(Keyed State)顾名思义,是任务按照键(key)来访问和维护的状态。它的特点非常鲜明,就是以key为作用范围进行隔离。
需要注意,使用Keyed State必须基于KeyedStream。没有进行keyBy分区的DataStream,即使转换算子实现了对应的富函数类,也不能通过运行时上下文访问Keyed State。
1. 值状态(ValueState)
顾名思义,状态中只保存一个“值”(value)。ValueState本身是一个接口,源码中定义如下:
public interface ValueState<T> extends State {
T value() throws IOException;
void update(T value) throws IOException;
}
这里的T是泛型,表示状态的数据内容可以是任何具体的数据类型。如果想要保存一个长整型值作为状态,那么类型就是ValueState<Long>
。
我们可以在代码中读写值状态,实现对于状态的访问和更新。
T value()
:获取当前状态的值;update(T value)
:对状态进行更新,传入的参数value就是要覆写的状态值。
在具体使用时,为了让运行时上下文清楚到底是哪个状态,我们还需要创建一个“状态描述器”(StateDescriptor)来提供状态的基本信息。例如源码中,ValueState的状态描述器构造方法如下:
public ValueStateDescriptor(String name, Class<T> typeClass) {
super(name, typeClass, null);
}
这里需要传入状态的名称和类型——这跟我们声明一个变量时做的事情完全一样。
**案例需求:**检测每种传感器的水位值,如果连续的两个水位值超过10,就输出报警。
public class ValueStateDemo {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
SingleOutputStreamOperator<WaterSensor> sensorDS = env
.socketTextStream("localhost", 7777)
.map(new WaterSensorMapFunction())
.assignTimestampsAndWatermarks(
WatermarkStrategy.<WaterSensor>forBoundedOutOfOrderness(Duration.ofSeconds(3))
.withTimestampAssigner((element,ts)-> element.getTs()*1000L)
);
/**
* 检测每种传感器的水位值,如果连续的两个水位值超过10,就输出报警。
*/
SingleOutputStreamOperator<String> process = sensorDS.keyBy(WaterSensor::getId)
.process(new KeyedProcessFunction<String, WaterSensor, String>() {
ValueState<Integer> lastVcState;
@Override
public void open(Configuration parameters) throws Exception {
super.open(parameters);
lastVcState = getRuntimeContext().getState(new ValueStateDescriptor<>("lastVcState", Types.INT));
}
@Override
public void processElement(WaterSensor waterSensor, KeyedProcessFunction<String, WaterSensor, String>.Context context, Collector<String> out) throws Exception {
int last = lastVcState.value() == null ? 0 : lastVcState.value();
Integer vc = waterSensor.getVc();
if (last > 10 && vc > 10) {
out.collect("传感器=" + waterSensor.getId() + "==>当前水位值=" + vc + ",与上一条水位值=" + last + "都超过10!!!!");
}
lastVcState.update(vc);
}
});
process.print();
env.execute();
}
}
2. 列表状态(ListState)
将需要保存的数据,以列表(List)的形式组织起来。在ListState接口中同样有一个类型参数T,表示列表中数据的类型。ListState也提供了一系列的方法来操作状态,使用方式与一般的List非常相似。
Iterable<T> get()
:获取当前的列表状态,返回的是一个可迭代类型Iterable;update(List<T> values)
:传入一个列表values,直接对状态进行覆盖;add(T value)
:在状态列表中添加一个元素value;addAll(List<T> values)
:向列表中添加多个元素,以列表values形式传入。
类似地,ListState的状态描述器就叫作ListStateDescriptor,用法跟ValueStateDescriptor完全一致。
3. Map状态(MapState)
把一些键值对(key-value)作为状态整体保存起来,可以认为就是一组key-value映射的列表。对应的MapState<UK, UV>接口中,就会有UK、UV两个泛型,分别表示保存的key和value的类型。同样,MapState提供了操作映射状态的方法,与Map的使用非常类似。
UV get(UK key)
:传入一个key作为参数,查询对应的value值;put(UK key, UV value)
:传入一个键值对,更新key对应的value值;putAll(Map<UK, UV> map)
:将传入的映射map中所有的键值对,全部添加到映射状态中;remove(UK key)
:将指定key对应的键值对删除;boolean contains(UK key)
:判断是否存在指定的key,返回一个boolean值。
另外,MapState也提供了获取整个映射相关信息的方法;
Iterable<Map.Entry<UK, UV>> entries()
:获取映射状态中所有的键值对;Iterable<UK> keys()
:获取映射状态中所有的键(key),返回一个可迭代Iterable类型;Iterable<UV> values()
:获取映射状态中所有的值(value),返回一个可迭代Iterable类型;boolean isEmpty()
:判断映射是否为空,返回一个boolean值。
统计每种传感器每种水位值出现的次数。
4. 归约状态(ReducingState)
类似于值状态(Value),不过需要对添加进来的所有数据进行归约,将归约聚合之后的值作为状态保存下来。ReducingState<T>
这个接口调用的方法类似于ListState,只不过它保存的只是一个聚合值,所以调用.add()方法时,不是在状态列表里添加元素,而是直接把新数据和之前的状态进行归约,并用得到的结果更新状态。
归约逻辑的定义,是在归约状态描述器(ReducingStateDescriptor)中,通过传入一个归约函数(ReduceFunction)来实现的。这里的归约函数,就是我们之前介绍reduce聚合算子时讲到的ReduceFunction,所以状态类型跟输入的数据类型是一样的。
public ReducingStateDescriptor(
String name, ReduceFunction<T> reduceFunction, Class<T> typeClass) {...}
这里的描述器有三个参数,其中第二个参数就是定义了归约聚合逻辑的ReduceFunction,另外两个参数则是状态的名称和类型。
**案例:**计算每种传感器的水位和
.process(new KeyedProcessFunction<String, WaterSensor, Integer>() {
private ReducingState<Integer> sumVcState;
@Override
public void open(Configuration parameters) throws Exception {
sumVcState = this
.getRuntimeContext()
.getReducingState(new ReducingStateDescriptor<Integer>("sumVcState",Integer::sum,Integer.class));
}
@Override
public void processElement(WaterSensor value, Context ctx, Collector<Integer> out) throws Exception {
sumVcState.add(value.getVc());
out.collect(sumVcState.get());
}
})
5. 聚合状态(AggregatingState)
与归约状态非常类似,聚合状态也是一个值,用来保存添加进来的所有数据的聚合结果。与ReducingState不同的是,它的聚合逻辑是由在描述器中传入一个更加一般化的聚合函数(AggregateFunction)来定义的;这也就是之前我们讲过的AggregateFunction,里面通过一个累加器(Accumulator)来表示状态,所以聚合的状态类型可以跟添加进来的数据类型完全不同,使用更加灵活。
同样地,AggregatingState接口调用方法也与ReducingState相同,调用.add()方法添加元素时,会直接使用指定的AggregateFunction进行聚合并更新状态。
**案例需求:**计算每种传感器的平均水位
6. 状态生存时间(TTL)
在实际应用中,很多状态会随着时间的推移逐渐增长,如果不加以限制,最终就会导致存储空间的耗尽。一个优化的思路是直接在代码中调用.clear()方法去清除状态,但是有时候我们的逻辑要求不能直接清除。这时就需要配置一个状态的“生存时间”(time-to-live,TTL),当状态在内存中存在的时间超出这个值时,就将它清除。
具体实现上,如果用一个进程不停地扫描所有状态看是否过期,显然会占用大量资源做无用功。状态的失效其实不需要立即删除,所以我们可以给状态附加一个属性,也就是状态的“失效时间”。状态创建的时候,设置 失效时间 = 当前时间 + TTL;之后如果有对状态的访问和修改,我们可以再对失效时间进行更新;当设置的清除条件被触发时(比如,状态被访问的时候,或者每隔一段时间扫描一次失效状态),就可以判断状态是否失效、从而进行清除了。
配置状态的TTL时,需要创建一个StateTtlConfig配置对象,然后调用状态描述器的.enableTimeToLive()方法启动TTL功能。
StateTtlConfig ttlConfig = StateTtlConfig
.newBuilder(Time.seconds(10))
.setUpdateType(StateTtlConfig.UpdateType.OnCreateAndWrite)
.setStateVisibility(StateTtlConfig.StateVisibility.NeverReturnExpired)
.build();
ValueStateDescriptor<String> stateDescriptor = new ValueStateDescriptor<>("my state", String.class);
stateDescriptor.enableTimeToLive(ttlConfig);
这里用到了几个配置项:
.newBuilder()
状态TTL配置的构造器方法,必须调用,返回一个Builder之后再调用.build()方法就可以得到StateTtlConfig了。方法需要传入一个Time作为参数,这就是设定的状态生存时间。
.setUpdateType()
设置更新类型。更新类型指定了什么时候更新状态失效时间,这里的OnCreateAndWrite表示只有创建状态和更改状态(写操作)时更新失效时间。另一种类型OnReadAndWrite则表示无论读写操作都会更新失效时间,也就是只要对状态进行了访问,就表明它是活跃的,从而延长生存时间。这个配置默认为OnCreateAndWrite。
.setStateVisibility()
设置状态的可见性。所谓的“状态可见性”,是指因为清除操作并不是实时的,所以当状态过期之后还有可能继续存在,这时如果对它进行访问,能否正常读取到就是一个问题了。这里设置的NeverReturnExpired是默认行为,表示从不返回过期值,也就是只要过期就认为它已经被清除了,应用不能继续读取;这在处理会话或者隐私数据时比较重要。对应的另一种配置是ReturnExpireDefNotCleanedUp,就是如果过期状态还存在,就返回它的值。
除此之外,TTL配置还可以设置在保存检查点(checkpoint)时触发清除操作,或者配置增量的清理(incremental cleanup),还可以针对RocksDB状态后端使用压缩过滤器(compaction filter)进行后台清理。这里需要注意,目前的TTL设置只支持处理时间。
10.4 算子状态
算子状态(Operator State)就是一个算子并行实例上定义的状态,作用范围被限定为当前算子任务。算子状态跟数据的key无关,所以不同key的数据只要被分发到同一个并行子任务,就会访问到同一个Operator State。
算子状态的实际应用场景不如Keyed State多,一般用在Source或Sink等与外部系统连接的算子上,或者完全没有key定义的场景。比如Flink的Kafka连接器中,就用到了算子状态。
当算子的并行度发生变化时,算子状态也支持在并行的算子任务实例之间做重组分配。根据状态的类型不同,重组分配的方案也会不同。
算子状态也支持不同的结构类型,主要有三种:ListState、UnionListState和BroadcastState。
1. 列表状态(ListState)
与Keyed State中的ListState一样,将状态表示为一组数据的列表。
与Keyed State中的列表状态的区别是:在算子状态的上下文中,不会按键(key)分别处理状态,所以每一个并行子任务上只会保留一个“列表”(list),也就是当前并行子任务上所有状态项的集合。列表中的状态项就是可以重新分配的最细粒度,彼此之间完全独立。
当算子并行度进行缩放调整时,算子的列表状态中的所有元素项会被统一收集起来,相当于把多个分区的列表合并成了一个“大列表”,然后再均匀地分配给所有并行任务。这种“均匀分配”的具体方法就是“轮询”(round-robin),与之前介绍的rebanlance数据传输方式类似,是通过逐一“发牌”的方式将状态项平均分配的。这种方式也叫作“平均分割重组”(even-split redistribution)。
算子状态中不会存在“键组”(key group)这样的结构,所以为了方便重组分配,就把它直接定义成了“列表”(list)。这也就解释了,为什么算子状态中没有最简单的值状态(ValueState)。
实战案例:计算map算子中计算的数据条数
/**
* 实战案例:在map算子中计算的数据条数
*/
public class OperatorListDemo {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(2);
env.socketTextStream("localhost", 7777)
.map(new MyMapCounterFunction())
.print();
env.execute();
}
private static class MyMapCounterFunction implements MapFunction<String, Long> , CheckpointedFunction {
private Long count = 0L;
private ListState<Long> state;
@Override
public Long map(String s) throws Exception {
return ++count;
}
@Override
public void snapshotState(FunctionSnapshotContext functionSnapshotContext) throws Exception {
System.out.println("snapshotState....");
state.clear();
state.add(count);
}
@Override
public void initializeState(FunctionInitializationContext context) throws Exception {
System.out.println("initializeState...");
state = context.getOperatorStateStore()
.getListState(new ListStateDescriptor<Long>("state", Types.LONG));
if (!context.isRestored()) {
System.out.println("恢复失败");
return;
}
for (Long l : state.get()) {
count += l;
}
}
}
}
2. 联合列表状态(UnionListState)
与ListState类似,联合列表状态也会将状态表示为一个列表。它与常规列表状态的区别在于,算子并行度进行缩放调整时对于状态的分配方式不同。
UnionListState的重点就在于“联合”(union)。在并行度调整时,**常规列表状态是轮询分配状态项,而联合列表状态的算子则会直接广播状态的完整列表。**这样,并行度缩放之后的并行子任务就获取到了联合后完整的“大列表”,可以自行选择要使用的状态项和要丢弃的状态项。这种分配也叫作“联合重组”(union redistribution)。如果列表中状态项数量太多,为资源和效率考虑一般不建议使用联合重组的方式。
使用方式同ListState,区别在如下标红部分:
state = context
.getOperatorStateStore()
.getUnionListState(new ListStateDescriptor(“union-state”, Types.LONG));
3. 广播状态(BroadcastState)
有时我们希望算子并行子任务都保持同一份“全局”状态,用来做统一的配置和规则设定。这时所有分区的所有数据都会访问到同一个状态,状态就像被“广播”到所有分区一样,这种特殊的算子状态,就叫作广播状态(BroadcastState)。
因为广播状态在每个并行子任务上的实例都一样,所以在并行度调整的时候就比较简单,只要复制一份到新的并行任务就可以实现扩展;而对于并行度缩小的情况,可以将多余的并行子任务连同状态直接砍掉——因为状态都是复制出来的,并不会丢失。
**案例实操:**水位超过指定的阈值发送告警,阈值可以动态修改。
public class OperatorBroadcastStateDemo {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(2);
// 数据流
SingleOutputStreamOperator<WaterSensor> sensorDS = env
.socketTextStream("localhost", 7777)
.map(new WaterSensorMapFunction());
// 配置流(用来广播配置)
DataStreamSource<String> configDS = env.socketTextStream("localhost", 8888);
// TODO 1. 将 配置流 广播
MapStateDescriptor<String, Integer> broadcastMapState = new MapStateDescriptor<>("broadcast-state", Types.STRING, Types.INT);
BroadcastStream<String> configBS = configDS.broadcast(broadcastMapState);
// TODO 2.把 数据流 和 广播后的配置流 connect
BroadcastConnectedStream<WaterSensor, String> sensorBCS = sensorDS.connect(configBS);
// TODO 3.调用 process
sensorBCS
.process(
new BroadcastProcessFunction<WaterSensor, String, String>() {
/**
* 数据流的处理方法: 数据流 只能 读取 广播状态,不能修改
* @param value
* @param ctx
* @param out
* @throws Exception
*/
@Override
public void processElement(WaterSensor value, ReadOnlyContext ctx, Collector<String> out) throws Exception {
// TODO 5.通过上下文获取广播状态,取出里面的值(只读,不能修改)
ReadOnlyBroadcastState<String, Integer> broadcastState = ctx.getBroadcastState(broadcastMapState);
Integer threshold = broadcastState.get("threshold");
// 判断广播状态里是否有数据,因为刚启动时,可能是数据流的第一条数据先来
threshold = (ObjectUtils.isEmpty(threshold) ? 0 : threshold);
if (value.getVc() > threshold) {
out.collect(value + ",水位超过指定的阈值:" + threshold + "!!!");
}
}
/**
* 广播后的配置流的处理方法: 只有广播流才能修改 广播状态
* @param value
* @param ctx
* @param out
* @throws Exception
*/
@Override
public void processBroadcastElement(String value, Context ctx, Collector<String> out) throws Exception {
// TODO 4. 通过上下文获取广播状态,往里面写数据
BroadcastState<String, Integer> broadcastState = ctx.getBroadcastState(broadcastMapState);
broadcastState.put("threshold", Integer.valueOf(value));
}
}
)
.print();
env.execute();
}
}
10.5 状态后端
在Flink中,状态的存储、访问以及维护,都是由一个可插拔的组件决定的,这个组件就叫作状态后端(state backend)。状态后端主要负责管理本地状态的存储方式和位置。
1. 状态后端的分类(HashMapStateBackend/RocksDB)
状态后端是一个“开箱即用”的组件,可以在不改变应用程序逻辑的情况下独立配置。Flink中提供了两类不同的状态后端,一种是“哈希表状态后端”(HashMapStateBackend),另一种是“内嵌RocksDB状态后端”(EmbeddedRocksDBStateBackend)。如果没有特别配置,系统默认的状态后端是HashMapStateBackend。
(1)哈希表状态后端(HashMapStateBackend)
HashMapStateBackend是把状态存放在内存里。具体实现上,哈希表状态后端在内部会直接把状态当作对象(objects),保存在Taskmanager的JVM堆上。普通的状态,以及窗口中收集的数据和触发器,都会以键值对的形式存储起来,所以底层是一个哈希表(HashMap),这种状态后端也因此得名。
(2)内嵌RocksDB状态后端(EmbeddedRocksDBStateBackend)
RocksDB是一种内嵌的key-value存储介质,可以把数据持久化到本地硬盘。配置EmbeddedRocksDBStateBackend后,会将处理中的数据全部放入RocksDB数据库中,RocksDB默认存储在TaskManager的本地数据目录里。
RocksDB的状态数据被存储为序列化的字节数组,读写操作需要序列化/反序列化,因此状态的访问性能要差一些。另外,因为做了序列化,key的比较也会按照字节进行,而不是直接调用.hashCode()和.equals()方法。
EmbeddedRocksDBStateBackend始终执行的是异步快照,所以不会因为保存检查点而阻塞数据的处理;而且它还提供了增量式保存检查点的机制,这在很多情况下可以大大提升保存效率。
2. 如何选择正确的状态后端
HashMap和RocksDB两种状态后端最大的区别,就在于本地状态存放在哪里。
HashMapStateBackend是内存计算,读写速度非常快;但是,状态的大小会受到集群可用内存的限制,如果应用的状态随着时间不停地增长,就会耗尽内存资源。
而RocksDB是硬盘存储,所以可以根据可用的磁盘空间进行扩展,所以它非常适合于超级海量状态的存储。不过由于每个状态的读写都需要做序列化/反序列化,而且可能需要直接从磁盘读取数据,这就会导致性能的降低,平均读写性能要比HashMapStateBackend慢一个数量级。
3. 状态后端的配置
在不做配置的时候,应用程序使用的默认状态后端是由集群配置文件flink-conf.yaml中指定的,配置的键名称为state.backend。这个默认配置对集群上运行的所有作业都有效,我们可以通过更改配置值来改变默认的状态后端。另外,我们还可以在代码中为当前作业单独配置状态后端,这个配置会覆盖掉集群配置文件的默认值。
(1)配置默认的状态后端
在flink-conf.yaml中,可以使用state.backend来配置默认状态后端。
配置项的可能值为hashmap,这样配置的就是HashMapStateBackend;如果配置项的值是rocksdb,这样配置的就是EmbeddedRocksDBStateBackend。
下面是一个配置HashMapStateBackend的例子:
# 默认状态后端
state.backend: hashmap
# 存放检查点的文件路径
state.checkpoints.dir: hdfs://hadoop102:8020/flink/checkpoints
这里的state.checkpoints.dir配置项,定义了检查点和元数据写入的目录。
(2)为每个作业(Per-job/Application)单独配置状态后端
通过执行环境设置,HashMapStateBackend。
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setStateBackend(new HashMapStateBackend());
通过执行环境设置,EmbeddedRocksDBStateBackend。
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setStateBackend(new EmbeddedRocksDBStateBackend());
需要注意,如果想在IDE中使用EmbeddedRocksDBStateBackend,需要为Flink项目添加依赖:
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-statebackend-rocksdb</artifactId>
<version>${flink.version}</version>
</dependency>
而由于Flink发行版中默认就包含了RocksDB(服务器上解压的Flink),所以只要我们的代码中没有使用RocksDB的相关内容,就不需要引入这个依赖。