C++的stack和queue类(三):适配所有容器的反向迭代器

news2025/1/13 2:35:07

目录

前言

list的反向迭代器 

list.h文件

ReverseIterator.h文件

test.cpp文件


前言

迭代器按性质分类:

  • 单向:forward_list
  • 双向:list
  • 随机:vector / deque

迭代器按功能分类:

  • 正向
  • 反向
  • const

list的反向迭代器 

问题:反向迭代器和正向迭代器的不同点在哪?

答:二者功能类似,只是++和--的方向不一样

基本概念:本来每个容器都要写一个反向迭代器的类,但是这样太费劲了,我们只需要写一个反向迭代器的类模板给编译器,传不同的容器的正向迭代器实例化,编译器帮助我们实例化出各种容器的对应反向迭代器

list.h文件

#pragma once
#include<assert.h>
#include"ReverseIterator.h"

namespace bit
{
	template<class T>
	struct ListNode
	{
		ListNode<T>* _next;
		ListNode<T>* _prev;
		T _data;

		ListNode(const T& x = T())
			:_next(nullptr)
			, _prev(nullptr)
			, _data(x)
		{}
	};


//正向迭代器的类模板
///
	template<class T, class Ref, class Ptr>
	struct ListIterator
	{

		typedef ListNode<T> Node;
		// typedef ListIterator<T, T&, T*>
		// typedef ListIterator<T, const T&, const T*>
		typedef ListIterator<T, Ref, Ptr> iterator;

		Node* _node;

		ListIterator(Node* node)
			:_node(node)
		{}

		// *it
		//T& operator*()
		Ref operator*()
		{
			return _node->_data;
		}

		// it->
		//T* operator->()
		Ptr operator->()
		{
			return &_node->_data;
		}

		// ++it
		iterator& operator++()
		{
			_node = _node->_next;
			return *this;
		}

		iterator operator++(int)
		{
			iterator tmp(*this);
			_node = _node->_next;

			return tmp;
		}

		iterator& operator--()
		{
			_node = _node->_prev;
			return *this;
		}

		iterator operator--(int)
		{
			iterator tmp(*this);
			_node = _node->_prev;

			return tmp;
		}

		bool operator!=(const iterator& it)
		{
			return _node != it._node;
		}

		bool operator==(const iterator& it)
		{
			return _node == it._node;
		}
	};

//list类模板
///
	template<class T>
	class list
	{
		typedef ListNode<T> Node;
	public:
		//<容器类>
		typedef ListIterator<T, T&, T*> iterator;//正向迭代器的类模板
		typedef ListIterator<T, const T&, const T*> const_iterator;//const正向迭代器的类模板

		//<容器的正向迭代器类>
		typedef ReverseIterator<iterator, T&, T*> reverse_iterator;//反向迭代器的类模板
		typedef ReverseIterator<const_iterator, const T&, const T*> const_reverse_iterator;//const反向迭代器的类模板

		//普通反向迭代器(const没写)
		reverse_iterator rbegin()
		{
			return reverse_iterator(end());
		}

		reverse_iterator rend()
		{
			return reverse_iterator(begin());
		}

		iterator begin()
		{
			return _head->_next;
		}

		iterator end()
		{
			return _head;
		}

		// const迭代器,需要是迭代器不能修改,还是迭代器指向的内容?
		// 迭代器指向的内容不能修改!const iterator不是我们需要const迭代器

		// T* const p1
		// const T* p2
		const_iterator begin() const
		{
			return _head->_next;
		}

		const_iterator end() const
		{
			return _head;
		}

		void empty_init()
		{
			_head = new Node;
			_head->_next = _head;
			_head->_prev = _head;

			_size = 0;
		}

		list()
		{
			empty_init();
		}

		//C++11的initializer_list
		list(initializer_list<T> il)
		{
			empty_init();

			for (auto& e : il)
			{
				push_back(e);
			}
		}


		// lt2(lt1)
		list(const list<T>& lt)
		{
			empty_init();
			for (auto& e : lt)
			{
				push_back(e);
			}
		}

		// 需要析构,一般就需要自己写深拷贝
		// 不需要析构,一般就不需要自己写深拷贝,默认浅拷贝就可以

		void swap(list<T>& lt)
		{
			std::swap(_head, lt._head);
			std::swap(_size, lt._size);
		}

		// lt1 = lt3
		list<T>& operator=(list<T> lt)
		{
			swap(lt);
			return *this;
		}

		void clear()
		{
			iterator it = begin();
			while (it != end())
			{
				it = erase(it);
			}
		}

		~list()
		{
			clear();
			delete _head;
			_head = nullptr;
		}

		/*void push_back(const T& x)
		{
			Node* newnode = new Node(x);
			Node* tail = _head->_prev;

			tail->_next = newnode;
			newnode->_prev = tail;
			newnode->_next = _head;
			_head->_prev = newnode;
		}*/

		void push_back(const T& x)
		{
			insert(end(), x);
		}

		void push_front(const T& x)
		{
			insert(begin(), x);
		}

		void pop_back()
		{
			erase(--end());
		}

		void pop_front()
		{
			erase(begin());
		}

		void insert(iterator pos, const T& val)
		{
			Node* cur = pos._node;
			Node* newnode = new Node(val);
			Node* prev = cur->_prev;

			// prev newnode cur;
			prev->_next = newnode;
			newnode->_prev = prev;
			newnode->_next = cur;
			cur->_prev = newnode;
			_size++;
		}

		iterator erase(iterator pos)
		{
			Node* cur = pos._node;
			Node* prev = cur->_prev;
			Node* next = cur->_next;

			prev->_next = next;
			next->_prev = prev;
			delete cur;
			_size--;

			return iterator(next);
		}

		size_t size() const
		{
			return _size;
		}

		bool empty()
		{
			return _size == 0;
		}

	private:
		Node* _head;
		size_t _size;
	};
}

ReverseIterator.h文件

#pragma once

// 所有容器的反向迭代器
// 迭代器适配器
namespace bit
{
	// vector<T>::iterator
	// list<T>::iterator
	template<class Iterator, class Ref, class Ptr>
	struct ReverseIterator
	{
		// typedef ReverseIterator<T, T&, T*>
		// typedef ReverseIterator<T, const T&, const T*>
		typedef ReverseIterator<Iterator, Ref, Ptr> rever_iterator;//将反向迭代器的类型重命名为rever_iterator
		
		Iterator _it;//定义一个正向迭代器类型的对象,并对其进行初始化和封装

		ReverseIterator(Iterator it)//反向迭代器的对象由正向迭代器的对象初始化
			:_it(it)
		{}

		Ref operator*()
		{
			Iterator tmp = _it;//不改变原迭代器本身的指向,只想获取迭代器指向的下一个位置的数据的值
			return *(--tmp);
		}

		Ptr operator->()
		{
			return &(operator*());//返回该对象地址,返回值的类型是Ptr*,匿名指针
		}

		//++和--逻辑与正向迭代器相反
		//前置++
		rever_iterator& operator++()//返回类型是一个反向迭代器类类型的引用
		{
			--_it;
			return *this;
		}

		//前置--
		rever_iterator& operator--()
		{
			++_it;
			return *this;
		}

		bool operator!=(const rever_iterator& s)
		{
			return _it != s._it;
		}
	};
}

test.cpp文件

#include<iostream>
#include<vector>
#include<list>
#include<algorithm>
using namespace std;
#include"list.h"//list必须放在这,list.h中有需要以上头文件的地方,不改变其它代码的前提下放在上面几行会报错

int main()
{
	bit::list<int> lt = { 1,2,3,4 };
	bit::list<int>::reverse_iterator rit = lt.rbegin();
	while (rit != lt.rend())
	{
		cout << *rit << " ";
		++rit;
	}
	cout << endl;

	return 0;
}
  • lt是一个被多参数实例化的一个list类类型的对象
  • rit是一个反向迭代器类型的对象,先调用lt中的rbegin函数,该函数又会调用end函数返回一个实例化好的普通正向迭代器类类型的匿名对象,然后该匿名对象会作为参数传递给ReverseIterator类模板,从而实例化出一个反向迭代器类类型的对象,最后返回给rit

  • 调用lt的rend函数,经过一系列操作后返回一个反向迭代器类类型的匿名对象,rit和该匿名对象一起传入rit的!=重载函数中进行比较,该函数又会调用二者正向迭代器中的!=重载函数,最后将比较结果返回
  • *rit会调用rit中的*重载函数,生成一个临时的正向迭代器类型的对象tmp(_it是由正向迭代初始化的)--tmp调用正向迭代器的--重载函数令tmp指向的前一个对象,调用tmp的*重载函数返回获取的数据(运用临时对象原迭代器指向的对象不变)
  • ++rit调用rit的++重载函数,先调用_it的--重载函数将_it指向前一个对象并返回更新后的_it,最后++重载函数返回更新后的_it

~over~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1590660.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

抽象工厂模式:深入探索面向对象设计的多样性

在软件开发中&#xff0c;正确地应用设计模式对于构建可扩展、可维护和高效的系统至关重要。抽象工厂模式作为创建型设计模式之一&#xff0c;提供了一个高层接口&#xff0c;用于创建一系列相关或依赖对象&#xff0c;而无需指定它们具体的类。本文将详细介绍抽象工厂模式的概…

【虚幻引擎】DTProjectSettings 蓝图获取基本项目配置插件使用说明 获取项目命名,项目版本,公司名,公司识别名,主页,联系方式

本插件可以使用蓝图获取到项目的一些基本配置&#xff0c;如获取&#xff1a;公司名、公司识别名、版权声明、描述、主页、许可条款、隐私政策、项目ID、项目命名、项目版本、支持联系方式、项目显示标题、项目调试标题信息、应保留窗口宽高比、使用无边框窗口、以VR启动、允许…

ASP.NET MVC企业级程序设计 (EF+MVP实现显示数据)

效果图 实现过程 1创建数据库 2创建项目文件 3创建控制器&#xff0c;右键添加&#xff0c;控制器 注意这里要写Home 创建成功 数据模型创建过程之前作品有具体过程 4创建视图&#xff0c;右键添加视图 5HomeController.cs代码 using System; using System.Collections.Gene…

JVM修炼之路【11】- 解决内存溢出、内存泄漏 以及相关案例

前面的10篇 都是基础的知识&#xff0c;包括类加载的过程 类加载的细节&#xff0c;jvm内存模型 垃圾回收 等等&#xff0c; 这一篇我们开始实战了解一下 各种疑难杂症&#xff1a;怎么监控 怎么发现 怎么解决 内存溢出 内存泄漏 这两个概念在垃圾回收器里面已经讲过了&#…

视频秒播优化实践

本文字数&#xff1a;2259字 预计阅读时间&#xff1a;10分钟 视频起播时间&#xff0c;即首帧时间&#xff0c;是视频类应用的一个重要核心指标&#xff0c;也是影响用户观看体验的核心因素之一。如果视频要加载很久才能开始播放&#xff0c;用户放弃播放甚至离开 App 的概率都…

React + three.js 实现人脸动捕与3D模型表情同步

系列文章目录 React 使用 three.js 加载 gltf 3D模型 | three.js 入门React three.js 3D模型骨骼绑定React three.js 3D模型面部表情控制React three.js 实现人脸动捕与3D模型表情同步 示例项目(github)&#xff1a;https://github.com/couchette/simple-react-three-facia…

【Godot4自学手册】第三十六节圆形移动或扇形移动的铁球

在第三十四节我实现了来回无限滚动的伤害铁刺球&#xff0c;这一节我准备实现一个圆形移动或扇形移动&#xff0c;并带有链条的铁球。效果如下&#xff1a; 一、实现原理 绕一点做圆周运动&#xff0c;简单的说就是&#xff1a; 每一帧根据旋转的角度计算出下一个位置的坐标…

R语言绘图:绘制横向柱状图

代码主要实现&#xff1a; 对数据进行排序&#xff0c;并且相同分组的数据会有相同的颜色。最后&#xff0c;绘制横向柱状图。 # 加载ggplot2包 library(ggplot2)# 示例数据&#xff0c;假设有三列&#xff1a;Group, Variable, Value data <- data.frame(Group factor(c(…

植被参数光学遥感反演方法(Python)及遥感与生态模型数据同化算法

传统的地面实测方法能够得到比较准确的植被参数&#xff08;如叶面积指数、覆盖度、生物量、叶绿素、干物质、叶片含水量、FPAR等&#xff09;&#xff0c;但其获取信息有限&#xff0c;难以满足大范围提取植被参数的需求&#xff0c;尤其在异质地表区域。遥感技术的发展为植被…

【PythonCode】力扣Leetcode11~15题Python版

【PythonCode】力扣Leetcode11~15题Python版 前言 力扣Leetcode是一个集学习、刷题、竞赛等功能于一体的编程学习平台&#xff0c;很多计算机相关专业的学生、编程自学者、IT从业者在上面学习和刷题。 在Leetcode上刷题&#xff0c;可以选择各种主流的编程语言&#xff0c;如C…

316_C++_xml文件解析成map,可以放到表格上 + xml、xlsx文件互相解析

xml文件例如&#xff1a; <?xml version"1.0" encoding"UTF-8" standalone"yes"?> <TrTable> <tr id"0" label"TR_PB_CH" text"CH%2"/> <tr id"4" label"TR_PB_CHN"…

[BT]BUUCTF刷题第16天(4.12)

第16天 Web [MRCTF2020]Ezpop 打开网站就是一段泄露的源代码&#xff1a; <?php //flag is in flag.php //WTF IS THIS? //Learn From https://ctf.ieki.xyz/library/php.html#%E5%8F%8D%E5%BA%8F%E5%88%97%E5%8C%96%E9%AD%94%E6%9C%AF%E6%96%B9%E6%B3%95 //And Crack…

Ollama、FastGPT大模型RAG结合使用案例

参考: https://ollama.com/download/linux https://doc.fastai.site/docs/intro/ https://blog.csdn.net/m0_71142057/article/details/136738997 https://doc.fastgpt.run/docs/development/custom-models/m3e/ Ollama作为后端大模型加载运行 FastGPT作为前端页面聊天集成RA…

Linux函数学习 select

1、Linux select 函数 int select(int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct timeval *timeout); nfds 最大文件fd 1 readfds 监听可读文件集合fd writefds 监听可写文件集合fd exceptfd 监听异常文件集…

[蓝桥杯] 岛屿个数(C语言)

提示&#xff1a; 橙色字体为需要注意部分&#xff0c;红色字体为难点部分&#xff0c;会在文章“重难点解答”部分精讲。 题目链接 蓝桥杯2023年第十四届省赛真题-岛屿个数 - C语言网 题目理解 这道题让我们求岛屿个数&#xff0c;那么我们就应该先弄懂&#xff0c;对于一…

R: 支持向量机(Support Vector Machine,简称SVM)

在数据科学和机器学习领域中&#xff0c;支持向量机&#xff08;Support Vector Machine&#xff0c;简称SVM&#xff09;是一种强大的监督学习算法&#xff0c;常用于分类和回归分析。它的优点之一是可以适用于复杂的数据集&#xff0c;并且在高维空间中表现良好。在本文中&am…

SpringBoot3 + Vue3 + Uniapp + uView + Elenment 实现动态二级分类以及二级分类的管理

SpringBoot3 Vue3 Uniapp uView Elenment 实现动态二级分类以及二级分类的管理 1. 效果展示1.1 前端显示效果1.2 后台管理一级分类1.3 后台管理二级分类 2. 后端代码2.1 GoodsCategoryController.java2.2.1 GoodsCategoryMapper.java2.2.2 GoodsCategorySonMapper.java2.3.…

蓝桥杯备赛(C/C++组)

README&#xff1a; 本笔记是自己的备考笔记&#xff0c;按照官网提纲进行复习&#xff01;适合有基础&#xff0c;复习用。 一、总考点 试题考查选手解决实际问题的能力&#xff0c;对于结果填空题&#xff0c;选手可以使用手算、软件、编程等方法解决&#xff0c;对于编程大…

Laravel 11入门:使用ServBay打造高效开发环境

Laravel 11发布&#xff0c;改进了不少功能。 它引入了更加流畅的应用结构、每秒限速、健康路由等特性。 此外&#xff0c;Laravel还推出了第一方可扩展的WebSocket服务器Laravel Reverb&#xff0c;为你的应用提供强大的实时功能。 在今天的指南中&#xff0c;我将设置一个…

OSPF中配置VLAN通信(单臂路由)

OSPF中配置VLAN通信&#xff08;单臂路由&#xff09; 单臂路由&#xff08;One-Arm Routing&#xff09;是一种网络路由配置方式&#xff0c;常用于解决网络中的特定问题。在传统的网络架构中&#xff0c;路由器通常需要连接到多个子网或网络段&#xff0c;每个子网都需要一个…