【TI毫米波雷达】I2C初始化配置和主机数据收发,用SDA来模拟UART数据输出,可直接连接IWR6843AOP开发板引脚

news2024/11/22 9:52:52

【TI毫米波雷达】I2C初始化配置和主机数据收发,用SDA来模拟UART数据输出,可直接连接IWR6843AOP开发板引脚

文章目录

  • 导入库
  • 引脚复用
  • 初始化I2C配置
  • 数据发送
  • 用SDA来模拟UART数据输出
  • 附录:结构框架
    • 雷达基本原理叙述
    • 雷达天线排列位置
    • 芯片框架
    • Demo工程功能
    • CCS工程导入
    • 工程叙述
      • Software Tasks
      • Data Path
      • Output information sent to host
        • List of detected objects
        • Range profile
        • Azimuth static heatmap
        • Azimuth/Elevation static heatmap
        • Range/Doppler heatmap
        • Stats information
        • Side information of detected objects
        • Temperature Stats
        • Range Bias and Rx Channel Gain/Phase Measurement and Compensation
        • Streaming data over LVDS
        • Implementation Notes
        • How to bypass CLI
        • Hardware Resource Allocation

导入库

相关依赖库为:

#include <ti/drivers/i2c/I2C.h>

同时需要在工程中链接文件:

libi2c_xwr68xx.aer4f
${COM_TI_MMWAVE_SDK_INSTALL_DIR}/packages/ti/drivers/i2c/lib

引脚复用

我采用的是这一组引脚 其被开发板已经引出
在这里插入图片描述
在这里插入图片描述

Pinmux_Set_OverrideCtrl(SOC_XWR68XX_PING14_PADAI, PINMUX_OUTEN_RETAIN_HW_CTRL, PINMUX_INPEN_RETAIN_HW_CTRL);
Pinmux_Set_FuncSel(SOC_XWR68XX_PING14_PADAI, SOC_XWR68XX_PING14_PADAI_I2C_SCL);

Pinmux_Set_OverrideCtrl(SOC_XWR68XX_PINF13_PADAH, PINMUX_OUTEN_RETAIN_HW_CTRL, PINMUX_INPEN_RETAIN_HW_CTRL);
Pinmux_Set_FuncSel(SOC_XWR68XX_PINF13_PADAH, SOC_XWR68XX_PINF13_PADAH_I2C_SDA);

初始化I2C配置

I2C相关函数分为两部分 主机和从机 这里我用的是主机的相关功能函数
在这里插入图片描述

首先需要调用此函数:

I2C_init();

然后与串口等外设初始化基本相同

    I2C_Params         i2cParams;
    I2C_Params_init(&i2cParams);

    i2cParams.bitRate = I2C_400kHz;
    //i2cParams.custom = 0;
    i2cParams.transferMode = I2C_MODE_BLOCKING;

    Vital_Signs_Global_Stu.I2C_Handle = I2C_open(0,&i2cParams);
    if (Vital_Signs_Global_Stu.I2C_Handle == NULL)
    {
        System_printf("Error: MMWDemoMSS Unable to open the Command I2C Instance\n");
        return;
    }

数据发送

需要定义I2C_Transaction 结构体
然后用I2C_transfer函数来发送

I2C_Transaction i2cTransaction;
i2cTransaction.readCount=0;
i2cTransaction.writeCount=1;
i2cTransaction.readBuf=NULL;
i2cTransaction.writeBuf=NULL;

i2cTransaction.slaveAddress=dat;
I2C_transfer(Vital_Signs_Global_Stu.I2C_Handle,&i2cTransaction);

其中writeCountreadCount不能全为0
如果发送从机地址以后没有收到应答 则会自动取消发送
如图:
在这里插入图片描述
这里传入的地址为7位地址 如果传入的是8位 则第7位将被丢失

这里虽然我们配置的是400k
但是实际上由于线程等原因 实际达不到这个速度
在这里插入图片描述

用SDA来模拟UART数据输出

先上效果:

TI毫米波雷达 用I2C来模拟发送UART数据 可直接连接IWR6843AOP开发板引脚

开发板引脚:
在这里插入图片描述

由于发送函数特性 我们可以用数据位来进行7为UART数据传输
但一般UART都是8位 所以我们可以定义以下数据格式:
如果第7位是1 则先发送0x01 反之发送0x00 然后发送停止位后拉高两次 之后再发送低7位

那么包装一下就是:

void I2C_Send(uint8_t dat)
{
    I2C_Transaction i2cTransaction;
    i2cTransaction.readCount=0;
    i2cTransaction.writeCount=1;
    i2cTransaction.readBuf=NULL;
    i2cTransaction.writeBuf=NULL;

    uint8_t dat_H = dat>>7;
    uint8_t dat_L = dat&0x7F;

    i2cTransaction.slaveAddress=dat_H;
    I2C_transfer(Vital_Signs_Global_Stu.I2C_Handle,&i2cTransaction);

    i2cTransaction.slaveAddress=dat_L;
    I2C_transfer(Vital_Signs_Global_Stu.I2C_Handle,&i2cTransaction);
}

在这里插入图片描述
注意 UART协议一般是LSB 但I2C是MSB 接收方需要更改配置或进行转换

传长数组的话就可以:

void I2C_Send_Buf(uint8_t* buf,uint8_t size)
{
    uint8_t i=0;
    for(i=0;i<size;i++)
    {
        I2C_Send(buf[i]);
    }
}

在这里插入图片描述
传一个特别大的数据:

I2C_Send_Buf(&data[0],2);

I2C_Send_Buf((uint8_t*)&Vital_Signs_Global_Stu.frameNumber,4);
I2C_Send_Buf((uint8_t*)&Vital_Signs_Global_Stu.HeartRate_Out,4);
I2C_Send_Buf((uint8_t*)&Vital_Signs_Global_Stu.BreathingRate_Out,4);
I2C_Send_Buf((uint8_t*)&Vital_Signs_Global_Stu.OutputStats,128);

I2C_Send_Buf(&data[2],2);

在这里插入图片描述

附录:结构框架

雷达基本原理叙述

雷达工作原理是上电-发送chirps-帧结束-处理-上电循环
一个Frame,首先是信号发送,比如96个chirp就顺次发出去,然后接收回来,混频滤波,ADC采样,这些都是射频模块的东西。射频完成之后,FFT,CFAR,DOA这些就是信号处理的东西。然后输出给那个结构体,就是当前帧获得的点云了。
在这里插入图片描述
在射频发送阶段 一个frame发送若干个chirp 也就是上图左上角
第一个绿色点为frame start 第二个绿色点为frame end
其中发送若干chirps(小三角形)
chirps的个数称为numLoops(代码中 rlFrameCfg_t结构体)
在mmwave studio上位机中 则称为 no of chirp loops

frame end 到 周期结束的时间为计算时间 称为inter frame period
在这里插入图片描述
frame start到循环结束的时间称为framePeriodicity(代码中 rlFrameCfg_t结构体)
在mmwave studio上位机中 则称为 Periodicity

如下图frame配置部分
在这里插入图片描述
在inter frame Periodicity时间内(比如这里整个周期是55ms)
就是用于计算和处理的时间 一定比55ms要小
如果chirps很多的话 那么计算时间就会减小

如果是处理点云数据 则只需要每一帧计算一次点云即可
计算出当前帧的xyz坐标和速度 以及保存时间戳

雷达天线排列位置

在工业雷达包:

C:\ti\mmwave_industrial_toolbox_4_12_0\antennas\ant_rad_patterns

路径下 有各个EVM开发板的天线排列说明
同样的 EVM手册中也有
如IWR6843AOPEVM:
在这里插入图片描述
在这里插入图片描述
其天线的间距等等位于数据手册:
在这里插入图片描述

芯片框架

IWR6843AOP可以分成三个主要部分及多个外设
BSS:雷达前端部分
MSS:cortex-rf4内核 主要用于控制
DSS: DSP C674内核 主要用于信号处理
外设:UART GPIO DPM HWA等

在这里插入图片描述
其中 大部分外设可以被MSS或DSS调用
另外 雷达前端BSS部分在SDK里由MMWave API调用

代码框架上 可以分成两个代码 MSS和DSS 两个代码同时运行 通过某些外设进行同步 协同运作

但也可以只跑一个内核 在仅MSS模式下 依旧可以调用某些用于信号处理的外设 demo代码就是如此

如下图为demo代码流程
在这里插入图片描述

Demo工程功能

IWR6843AOP的开箱工程是根据IWR6843AOPEVM开发板来的
该工程可以将IWR6843AOP的两个串口利用起来 实现的功能主要是两个方面:
通过115200波特率的串口配置参数 建立握手协议
通过115200*8的串口输出雷达数据
此工程需要匹配TI官方的上位机:mmWave_Demo_Visualizer_3.6.0来使用
该上位机可以在连接串口后自动化操作 并且对雷达数据可视化
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
关于雷达参数配置 则在SDK的mmw\profiles目录下
言简意赅 可以直接更改该目录下的文件参数来达到配置雷达参数的目的
在这里插入图片描述

但这种方法不利于直接更改 每次用上位机运行后的参数是固定的(上位机运行需要SDK环境) 所以也可以在代码中写死 本文探讨的就是这个方向

CCS工程导入

首先 在工业雷达包目录下找到该工程设置

C:\ti\mmwave_industrial_toolbox_4_12_0\labs\Out_Of_Box_Demo\src\xwr6843AOP

使用CCS的import project功能导入工程后 即可完成环境搭建
在这里插入图片描述
这里用到的SDK最新版为3.6版本

工程叙述

以下来自官方文档 可以直接跳过

Software Tasks

The demo consists of the following (SYSBIOS) tasks:

MmwDemo_initTask. This task is created/launched by main and is a one-time active task whose main functionality is to initialize drivers (<driver>_init), MMWave module (MMWave_init), DPM module (DPM_init), open UART and data path related drivers (EDMA, HWA), and create/launch the following tasks (the CLI_task is launched indirectly by calling CLI_open).
CLI_task. This command line interface task provides a simplified 'shell' interface which allows the configuration of the BSS via the mmWave interface (MMWave_config). It parses input CLI configuration commands like chirp profile and GUI configuration. When sensor start CLI command is parsed, all actions related to starting sensor and starting the processing the data path are taken. When sensor stop CLI command is parsed, all actions related to stopping the sensor and stopping the processing of the data path are taken
MmwDemo_mmWaveCtrlTask. This task is used to provide an execution context for the mmWave control, it calls in an endless loop the MMWave_execute API.
MmwDemo_DPC_ObjectDetection_dpmTask. This task is used to provide an execution context for DPM (Data Path Manager) execution, it calls in an endless loop the DPM_execute API. In this context, all of the registered object detection DPC (Data Path Chain) APIs like configuration, control and execute will take place. In this task. When the DPC's execute API produces the detected objects and other results, they are transmitted out of the UART port for display using the visualizer.

Data Path

在这里插入图片描述
Top Level Data Path Processing Chain
在这里插入图片描述
Top Level Data Path Timing

The data path processing consists of taking ADC samples as input and producing detected objects (point-cloud and other information) to be shipped out of UART port to the PC. The algorithm processing is realized using the DPM registered Object Detection DPC. The details of the processing in DPC can be seen from the following doxygen documentation:
ti/datapath/dpc/objectdetection/objdethwa/docs/doxygen/html/index.html

Output information sent to host

Output packets with the detection information are sent out every frame through the UART. Each packet consists of the header MmwDemo_output_message_header_t and the number of TLV items containing various data information with types enumerated in MmwDemo_output_message_type_e. The numerical values of the types can be found in mmw_output.h. Each TLV item consists of type, length (MmwDemo_output_message_tl_t) and payload information. The structure of the output packet is illustrated in the following figure. Since the length of the packet depends on the number of detected objects it can vary from frame to frame. The end of the packet is padded so that the total packet length is always multiple of 32 Bytes.

在这里插入图片描述
Output packet structure sent to UART
The following subsections describe the structure of each TLV.

List of detected objects
Type: (MMWDEMO_OUTPUT_MSG_DETECTED_POINTS)

Length: (Number of detected objects) x (size of DPIF_PointCloudCartesian_t)

Value: Array of detected objects. The information of each detected object is as per the structure DPIF_PointCloudCartesian_t. When the number of detected objects is zero, this TLV item is not sent. The maximum number of objects that can be detected in a sub-frame/frame is DPC_OBJDET_MAX_NUM_OBJECTS.

The orientation of x,y and z axes relative to the sensor is as per the following figure. (Note: The antenna arrangement in the figure is shown for standard EVM (see gAntDef_default) as an example but the figure is applicable for any antenna arrangement.)

在这里插入图片描述
Coordinate Geometry
The whole detected objects TLV structure is illustrated in figure below.
在这里插入图片描述
Detected objects TLV

Range profile
Type: (MMWDEMO_OUTPUT_MSG_RANGE_PROFILE)

Length: (Range FFT size) x (size of uint16_t)

Value: Array of profile points at 0th Doppler (stationary objects). The points represent the sum of log2 magnitudes of received antennas expressed in Q9 format.

Noise floor profile
Type: (MMWDEMO_OUTPUT_MSG_NOISE_PROFILE)

Length: (Range FFT size) x (size of uint16_t)

Value: This is the same format as range profile but the profile is at the maximum Doppler bin (maximum speed objects). In general for stationary scene, there would be no objects or clutter at maximum speed so the range profile at such speed represents the receiver noise floor.
Azimuth static heatmap
Type: (MMWDEMO_OUTPUT_MSG_AZIMUT_STATIC_HEAT_MAP)

Length: (Range FFT size) x (Number of "azimuth" virtual antennas) (size of cmplx16ImRe_t_)

Value: Array DPU_AoAProcHWA_HW_Resources::azimuthStaticHeatMap. The antenna data are complex symbols, with imaginary first and real second in the following order:
Imag(ant 0, range 0), Real(ant 0, range 0),...,Imag(ant N-1, range 0),Real(ant N-1, range 0)
         ...
         Imag(ant 0, range R-1), Real(ant 0, range R-1),...,Imag(ant N-1, range R-1),Real(ant N-1, range R-1)

Note that the number of virtual antennas is equal to the number of “azimuth” virtual antennas. The antenna symbols are arranged in the order as they occur at the input to azimuth FFT. Based on this data the static azimuth heat map could be constructed by the GUI running on the host.

Azimuth/Elevation static heatmap
Type: (MMWDEMO_OUTPUT_MSG_AZIMUT_ELEVATION_STATIC_HEAT_MAP)

Length: (Range FFT size) x (Number of all virtual antennas) (size of cmplx16ImRe_t_)

Value: Array DPU_AoAProcHWA_HW_Resources::azimuthStaticHeatMap. The antenna data are complex symbols, with imaginary first and real second in the following order:
 Imag(ant 0, range 0), Real(ant 0, range 0),...,Imag(ant N-1, range 0),Real(ant N-1, range 0)
         ...
         Imag(ant 0, range R-1), Real(ant 0, range R-1),...,Imag(ant N-1, range R-1),Real(ant N-1, range R-1)

Note that the number of virtual antennas is equal to the total number of active virtual antennas. The antenna symbols are arranged in the order as they occur in the radar cube matrix. This TLV is sent by AOP version of MMW demo, that uses AOA2D DPU. Based on this data the static azimuth or elevation heat map could be constructed by the GUI running on the host.

Range/Doppler heatmap
Type: (MMWDEMO_OUTPUT_MSG_RANGE_DOPPLER_HEAT_MAP)

Length: (Range FFT size) x (Doppler FFT size) (size of uint16_t)

Value: Detection matrix DPIF_DetMatrix::data. The order is :
 X(range bin 0, Doppler bin 0),...,X(range bin 0, Doppler bin D-1),
        ...
        X(range bin R-1, Doppler bin 0),...,X(range bin R-1, Doppler bin D-1)
Stats information
Type: (MMWDEMO_OUTPUT_MSG_STATS )

Length: (size of MmwDemo_output_message_stats_t)

Value: Timing information as per MmwDemo_output_message_stats_t. See timing diagram below related to the stats.

在这里插入图片描述
Processing timing

Note:

The MmwDemo_output_message_stats_t::interChirpProcessingMargin is not computed (it is always set to 0). This is because there is no CPU involvement in the 1D processing (only HWA and EDMA are involved), and it is not possible to know how much margin is there in chirp processing without CPU being notified at every chirp when processing begins (chirp event) and when the HWA-EDMA computation ends. The CPU is intentionally kept free during 1D processing because a real application may use this time for doing some post-processing algorithm execution.
While the MmwDemo_output_message_stats_t::interFrameProcessingTime reported will be of the current sub-frame/frame, the MmwDemo_output_message_stats_t::interFrameProcessingMargin and MmwDemo_output_message_stats_t::transmitOutputTime will be of the previous sub-frame (of the same MmwDemo_output_message_header_t::subFrameNumber as that of the current sub-frame) or of the previous frame.
The MmwDemo_output_message_stats_t::interFrameProcessingMargin excludes the UART transmission time (available as MmwDemo_output_message_stats_t::transmitOutputTime). This is done intentionally to inform the user of a genuine inter-frame processing margin without being influenced by a slow transport like UART, this transport time can be significantly longer for example when streaming out debug information like heat maps. Also, in a real product deployment, higher speed interfaces (e.g LVDS) are likely to be used instead of UART. User can calculate the margin that includes transport overhead (say to determine the max frame rate that a particular demo configuration will allow) using the stats because they also contain the UART transmission time.

The CLI command “guMonitor” specifies which TLV element will be sent out within the output packet. The arguments of the CLI command are stored in the structure MmwDemo_GuiMonSel_t.

Side information of detected objects
Type: (MMWDEMO_OUTPUT_MSG_DETECTED_POINTS_SIDE_INFO)

Length: (Number of detected objects) x (size of DPIF_PointCloudSideInfo_t)

Value: Array of detected objects side information. The side information of each detected object is as per the structure DPIF_PointCloudSideInfo_t). When the number of detected objects is zero, this TLV item is not sent.
Temperature Stats
Type: (MMWDEMO_OUTPUT_MSG_TEMPERATURE_STATS)

Length: (size of MmwDemo_temperatureStats_t)

Value: Structure of detailed temperature report as obtained from Radar front end. MmwDemo_temperatureStats_t::tempReportValid is set to return value of rlRfGetTemperatureReport. If MmwDemo_temperatureStats_t::tempReportValid is 0, values in MmwDemo_temperatureStats_t::temperatureReport are valid else they should be ignored. This TLV is sent along with Stats TLV described in Stats information
Range Bias and Rx Channel Gain/Phase Measurement and Compensation

Because of imperfections in antenna layouts on the board, RF delays in SOC, etc, there is need to calibrate the sensor to compensate for bias in the range estimation and receive channel gain and phase imperfections. The following figure illustrates the calibration procedure.

在这里插入图片描述
Calibration procedure ladder diagram

The calibration procedure includes the following steps:

Set a strong target like corner reflector at the distance of X meter (X less than 50 cm is not recommended) at boresight.
Set the following command in the configuration profile in .../profiles/profile_calibration.cfg, to reflect the position X as follows: where D (in meters) is the distance of window around X where the peak will be searched. The purpose of the search window is to allow the test environment from not being overly constrained say because it may not be possible to clear it of all reflectors that may be stronger than the one used for calibration. The window size is recommended to be at least the distance equivalent of a few range bins. One range bin for the calibration profile (profile_calibration.cfg) is about 5 cm. The first argument "1" is to enable the measurement. The stated configuration profile (.cfg) must be used otherwise the calibration may not work as expected (this profile ensures all transmit and receive antennas are engaged among other things needed for calibration).
   measureRangeBiasAndRxChanPhase 1 X D
Start the sensor with the configuration file.
In the configuration file, the measurement is enabled because of which the DPC will be configured to perform the measurement and generate the measurement result (DPU_AoAProc_compRxChannelBiasCfg_t) in its result structure (DPC_ObjectDetection_ExecuteResult_t::compRxChanBiasMeasurement), the measurement results are written out on the CLI port (MmwDemo_measurementResultOutput) in the format below: For details of how DPC performs the measurement, see the DPC documentation.
   compRangeBiasAndRxChanPhase <rangeBias> <Re(0,0)> <Im(0,0)> <Re(0,1)> <Im(0,1)> ... <Re(0,R-1)> <Im(0,R-1)> <Re(1,0)> <Im(1,0)> ... <Re(T-1,R-1)> <Im(T-1,R-1)>
The command printed out on the CLI now can be copied and pasted in any configuration file for correction purposes. This configuration will be passed to the DPC for the purpose of applying compensation during angle computation, the details of this can be seen in the DPC documentation. If compensation is not desired, the following command should be given (depending on the EVM and antenna arrangement) Above sets the range bias to 0 and the phase coefficients to unity so that there is no correction. Note the two commands must always be given in any configuration file, typically the measure commmand will be disabled when the correction command is the desired one.
   For ISK EVM:
   compRangeBiasAndRxChanPhase 0.0   1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 
   For AOP EVM
   compRangeBiasAndRxChanPhase 0.0   1 0 -1 0 1 0 -1 0 1 0 -1 0 1 0 -1 0 1 0 -1 0 1 0 -1 0 
Streaming data over LVDS
The LVDS streaming feature enables the streaming of HW data (a combination of ADC/CP/CQ data) and/or user specific SW data through LVDS interface. The streaming is done mostly by the CBUFF and EDMA peripherals with minimal CPU intervention. The streaming is configured through the MmwDemo_LvdsStreamCfg_t CLI command which allows control of HSI header, enable/disable of HW and SW data and data format choice for the HW data. The choices for data formats for HW data are:

MMW_DEMO_LVDS_STREAM_CFG_DATAFMT_DISABLED
MMW_DEMO_LVDS_STREAM_CFG_DATAFMT_ADC
MMW_DEMO_LVDS_STREAM_CFG_DATAFMT_CP_ADC_CQ
In order to see the high-level data format details corresponding to the above data format configurations, refer to the corresponding slides in ti\drivers\cbuff\docs\CBUFF_Transfers.pptx

When HW data LVDS streaming is enabled, the ADC/CP/CQ data is streamed per chirp on every chirp event. When SW data streaming is enabled, it is streamed during inter-frame period after the list of detected objects for that frame is computed. The SW data streamed every frame/sub-frame is composed of the following in time:

HSI header (HSIHeader_t): refer to HSI module for details.
User data header: MmwDemo_LVDSUserDataHeader
User data payloads:
Point-cloud information as a list : DPIF_PointCloudCartesian_t x number of detected objects
Point-cloud side information as a list : DPIF_PointCloudSideInfo_t x number of detected objects

The format of the SW data streamed is shown in the following figure:
在这里插入图片描述
LVDS SW Data format

Note:

Only single-chirp formats are allowed, multi-chirp is not supported.
When number of objects detected in frame/sub-frame is 0, there is no transmission beyond the user data header.
For HW data, the inter-chirp duration should be sufficient to stream out the desired amount of data. For example, if the HW data-format is ADC and HSI header is enabled, then the total amount of data generated per chirp is:
(numAdcSamples * numRxChannels * 4 (size of complex sample) + 52 [sizeof(HSIDataCardHeader_t) + sizeof(HSISDKHeader_t)] ) rounded up to multiples of 256 [=sizeof(HSIHeader_t)] bytes.
The chirp time Tc in us = idle time + ramp end time in the profile configuration. For n-lane LVDS with each lane at a maximum of B Mbps,
maximum number of bytes that can be send per chirp = Tc * n * B / 8 which should be greater than the total amount of data generated per chirp i.e
Tc * n * B / 8 >= round-up(numAdcSamples * numRxChannels * 4 + 52, 256).
E.g if n = 2, B = 600 Mbps, idle time = 7 us, ramp end time = 44 us, numAdcSamples = 512, numRxChannels = 4, then 7650 >= 8448 is violated so this configuration will not work. If the idle-time is doubled in the above example, then we have 8700 > 8448, so this configuration will work.
For SW data, the number of bytes to transmit each sub-frame/frame is:
52 [sizeof(HSIDataCardHeader_t) + sizeof(HSISDKHeader_t)] + sizeof(MmwDemo_LVDSUserDataHeader_t) [=8] +
number of detected objects (Nd) * { sizeof(DPIF_PointCloudCartesian_t) [=16] + sizeof(DPIF_PointCloudSideInfo_t) [=4] } rounded up to multiples of 256 [=sizeof(HSIHeader_t)] bytes.
or X = round-up(60 + Nd * 20, 256). So the time to transmit this data will be
X * 8 / (n*B) us. The maximum number of objects (Ndmax) that can be detected is defined in the DPC (DPC_OBJDET_MAX_NUM_OBJECTS). So if Ndmax = 500, then time to transmit SW data is 68 us. Because we parallelize this transmission with the much slower UART transmission, and because UART transmission is also sending at least the same amount of information as the LVDS, the LVDS transmission time will not add any burdens on the processing budget beyond the overhead of reconfiguring and activating the CBUFF session (this overhead is likely bigger than the time to transmit).
The total amount of data to be transmitted in a HW or SW packet must be greater than the minimum required by CBUFF, which is 64 bytes or 32 CBUFF Units (this is the definition CBUFF_MIN_TRANSFER_SIZE_CBUFF_UNITS in the CBUFF driver implementation). If this threshold condition is violated, the CBUFF driver will return an error during configuration and the demo will generate a fatal exception as a result. When HSI header is enabled, the total transfer size is ensured to be at least 256 bytes, which satisfies the minimum. If HSI header is disabled, for the HW session, this means that numAdcSamples * numRxChannels * 4 >= 64. Although mmwavelink allows minimum number of ADC samples to be 2, the demo is supported for numAdcSamples >= 64. So HSI header is not required to be enabled for HW only case. But if SW session is enabled, without the HSI header, the bytes in each packet will be 8 + Nd * 20. So for frames/sub-frames where Nd < 3, the demo will generate exception. Therefore HSI header must be enabled if SW is enabled, this is checked in the CLI command validation.
Implementation Notes
The LVDS implementation is mostly present in mmw_lvds_stream.h and mmw_lvds_stream.c with calls in mss_main.c. Additionally HSI clock initialization is done at first time sensor start using MmwDemo_mssSetHsiClk.
EDMA channel resources for CBUFF/LVDS are in the global resource file (mmw_res.h, see Hardware Resource Allocation) along with other EDMA resource allocation. The user data header and two user payloads are configured as three user buffers in the CBUFF driver. Hence SW allocation for EDMA provides for three sets of EDMA resources as seen in the SW part (swSessionEDMAChannelTable[.]) of MmwDemo_LVDSStream_EDMAInit. The maximum number of HW EDMA resources are needed for the data-format MMW_DEMO_LVDS_STREAM_CFG_DATAFMT_CP_ADC_CQ, which as seen in the corresponding slide in ti\drivers\cbuff\docs\CBUFF_Transfers.pptx is 12 channels (+ shadows) including the 1st special CBUFF EDMA event channel which CBUFF IP generates to the EDMA, hence the HW part (hwwSessionEDMAChannelTable[.]) of MmwDemo_LVDSStream_EDMAInit has 11 table entries.
Although the CBUFF driver is configured for two sessions (hw and sw), at any time only one can be active. So depending on the LVDS CLI configuration and whether advanced frame or not, there is logic to activate/deactivate HW and SW sessions as necessary.
The CBUFF session (HW/SW) configure-create and delete depends on whether or not re-configuration is required after the first time configuration.
For HW session, re-configuration is done during sub-frame switching to re-configure for the next sub-frame but when there is no advanced frame (number of sub-frames = 1), the HW configuration does not need to change so HW session does not need to be re-created.
For SW session, even though the user buffer start addresses and sizes of headers remains same, the number of detected objects which determines the sizes of some user buffers changes from one sub-frame/frame to another sub-frame/frame. Therefore SW session needs to be recreated every sub-frame/frame.
User may modify the application software to transmit different information than point-cloud in the SW data e.g radar cube data (output of range DPU). However the CBUFF also has a maximum link list entry size limit of 0x3FFF CBUFF units or 32766 bytes. This means it is the limit for each user buffer entry [there are maximum of 3 entries -1st used for user data header, 2nd for point-cloud and 3rd for point-cloud side information]. During session creation, if this limit is exceeded, the CBUFF will return an error (and demo will in turn generate an exception). A single physical buffer of say size 50000 bytes may be split across two user buffers by providing one user buffer with (address, size) = (start address, 25000) and 2nd user buffer with (address, size) = (start address + 25000, 25000), beyond this two (or three if user data header is also replaced) limit, the user will need to create and activate (and wait for completion) the SW session multiple times to accomplish the transmission.

The following figure shows a timing diagram for the LVDS streaming (the figure is not to scale as actual durations will vary based on configuration).
在这里插入图片描述

How to bypass CLI
Re-implement the file mmw_cli.c as follows:

MmwDemo_CLIInit should just create a task with input taskPriority. Lets say the task is called "MmwDemo_sensorConfig_task".
All other functions are not needed
Implement the MmwDemo_sensorConfig_task as follows:
Fill gMmwMCB.cfg.openCfg
Fill gMmwMCB.cfg.ctrlCfg
Add profiles and chirps using MMWave_addProfile and MMWave_addChirp functions
Call MmwDemo_CfgUpdate for every offset in Offsets for storing CLI configuration (MMWDEMO_xxx_OFFSET in mmw.h)
Fill gMmwMCB.dataPathObj.objDetCommonCfg.preStartCommonCfg
Call MmwDemo_openSensor
Call MmwDemo_startSensor (One can use helper function MmwDemo_isAllCfgInPendingState to know if all dynamic config was provided)
Hardware Resource Allocation
The Object Detection DPC needs to configure the DPUs hardware resources (HWA, EDMA). Even though the hardware resources currently are only required to be allocated for this one and only DPC in the system, the resource partitioning is shown to be in the ownership of the demo. This is to illustrate the general case of resource allocation across more than one DPCs and/or demo's own processing that is post-DPC processing. This partitioning can be seen in the mmw_res.h file. This file is passed as a compiler command line define
"--define=APP_RESOURCE_FILE="<ti/demo/xwr64xx/mmw/mmw_res.h>" 

in mmw.mak when building the DPC sources as part of building the demo application and is referred in object detection DPC sources where needed as

#include APP_RESOURCE_FILE 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1589310.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

数据结构-----枚举、泛型进阶(通配符?)

文章目录 枚举1 背景及定义2 使用3 枚举优点缺点4 枚举和反射4.1 枚举是否可以通过反射&#xff0c;拿到实例对象呢&#xff1f; 5 总结 泛型进阶1 通配符 ?1.1 通配符解决什么问题1.2 通配符上界1.3 通配符下界 枚举 1 背景及定义 枚举是在JDK1.5以后引入的。主要用途是&am…

【Linux】进程通信之匿名管道通信

一、进程间进行通信的目的 我们往往需要多个进程协同&#xff0c;共同完成一些事情。 数据传输&#xff1a;一个进程需要将它的数据发送给另一个进程资源共享&#xff1a;多个进程之间共享同样的资源。通知事件&#xff1a;一个进程需要向另一个或一组进程发送消息&#xff0c…

Netty NioEventLoop详解

文章目录 前言类图主要功能NioEventLoop如何实现事件循环NioEventLoop如何处理多路复用Netty如何管理Channel和Selector管理Channel管理Selector注意事项 前言 Netty通过事件循环机制(EventLoop)处理IO事件和异步任务&#xff0c;简单来说&#xff0c;就是通过一个死循环&…

23年坚守,只为打造高品质立秀膨体,索康让品质为中国说话

2024年3月23日&#xff0c;第二十三届上海国际整形美容外科大会&#xff08;以下简称“大会”&#xff09;在上海召开&#xff0c;本次大会由张涤生整形外科发展基金会主办&#xff0c;上海交通大学附属第九人民医院整复外科、Chinese Journal of Plastic and Reconstructive S…

性能优化 - 你知道CSS有哪些优化方案吗

难度级别:中高级及以上 提问概率:70% CSS是前端开发工作中必不可少的技能之一,同时也是网页开发中必不可少的重要元素之一。但很多人所开发的项目本身对性能要求并不高,再加上项目周期紧张,久而久之,也就容易养成不考虑细节的习惯,觉得C…

NzN的数据结构--二叉树part2

上一章我们介绍了二叉树入门的一些内容&#xff0c;本章我们就要正式开始学习二叉树的实现方法&#xff0c;先三连后看是好习惯&#xff01;&#xff01;&#xff01; 目录 一、二叉树的顺序结构及实现 1. 二叉树的顺序结构 2. 堆的概念及结构 3. 堆的实现 3.1 堆的创建 …

04-12 周五基于VS code + Python实现CSDN发布文章的自动生成

简介 之前曾经说过&#xff0c;在撰写文章之后&#xff0c;需要&#xff0c;同样需要将外链的图像转换为的形式&#xff0c;因此&#xff0c;可以参考 04-12 周五 基于VS Code Python 实现单词的自动提取 配置步骤 配置task 在vscode的命令面板configure task。配置如下的任…

python知识点汇总(十一)

python知识点总结 1、当Python退出时&#xff0c;是否会清除所有分配的内存&#xff1f;2、Python的优势有哪些&#xff1f;3、什么是元组的解封装4、Python中如何动态获取和设置对象的属性&#xff1f;5、创建删除操作系统上的文件6、主动抛出异常7、help() 函数和 dir() 函数…

人工智能基础部分26-基于知识推理引擎KIE算法的原理介绍与实际应用

大家好&#xff0c;我是微学AI&#xff0c;今天给大家介绍一下人工智能基础部分26-基于知识推理引擎KIE算法的原理介绍与实际应用。知识推理引擎(Knowledge Inference Engine, KIE)是一种人工智能技术&#xff0c;其核心原理是基于规则和逻辑的方法来处理复杂的问题。它构建在业…

从前端角度防范XSS攻击的策略与实践

XSS&#xff08;Cross-Site Scripting&#xff0c;跨站脚本攻击&#xff09;是一种常见的网络安全威胁&#xff0c;它允许攻击者将恶意脚本注入到正常的网页中&#xff0c;从而在其他用户的浏览器上执行这些脚本。这可能导致数据泄露、会话劫持、甚至是对受害者计算机的完全控制…

探新路建“枢纽” 湖南深耕中非经贸合作“试验田”

湖南作为中国与非洲经贸合作的重要窗口&#xff0c;积极推动中非经贸关系的发展和深化。通过构建覆盖全产业链的高效运作模式&#xff0c;湖南企业能够在一周内将肯尼亚干制鳀鱼加工成为麻辣鲜香的劲仔深海小鱼并投入中国市场。此外&#xff0c;湖南还致力于推动非洲优质农产品…

【vue】watchEffect 自动侦听器

watchEffect&#xff1a;自动监听值的变化 获取旧值时&#xff0c;不是很方便&#xff0c;建议用watch <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevic…

数学基础:深度学习的语言

数学基础&#xff1a;深度学习的语言 概述 在深度学习的世界里&#xff0c;数学不仅仅是一套工具&#xff0c;它是构建、理解和优化深度学习模型的基石。从向量空间的概念到复杂的优化算法&#xff0c;数学的每一个分支都在深度学习的发展中扮演着关键角色。本文的目标是通过深…

解决cmd输入py文件路径不能执行,使用anaconda prompt 能执行

究其原因&#xff0c;是因为没有配置环境&#xff01;&#xff01;&#xff01;&#xff01;&#xff01;&#xff01;&#xff01; 第一步&#xff1a;配置环境变量 操作步骤如下&#xff1a; 1、右击此电脑 ---->属性 2、高级系统设置 3、点击环境变量 4、选择 …

网工内推 | 网络工程师,13薪,周末双休,华三、华为认证优先

01 路邦远大 招聘岗位&#xff1a;网络工程师 职责描述&#xff1a; 1、配合市场销售人员&#xff0c;做好产品的售后服务工作&#xff1b; 2、负责项目方案安装调试指导以及日常客户使用培训&#xff0c;对客户提出的问题提出解决方案&#xff1b; 3、为客户提供专业、规范的…

简析OpenHarmony软总线能力

分布式软总线是 OpenHarmony 的重要能力&#xff0c;设计目标是实现多设备间的通信方式。分布式软总线是分布式硬件和分布式软总线的重要基础&#xff0c;分布式软总线提供一种不区分链路的设备间发现、组网和传输的能力&#xff1a; 发现&#xff1a;应用 WiFi&#xff0c;蓝…

Baichuan-7B-chat WebDemo 部署调用

Baichuan-7B-chat WebDemo 部署调用 Baichuan2 介绍 Baichuan 2 是百川智能推出的新一代开源大语言模型&#xff0c;采用 2.6 万亿 Tokens 的高质量语料训练。在多个权威的中文、英文和多语言的通用、领域 benchmark 上取得同尺寸最佳的效果。 环境准备 在autodl平台中租一…

高并发高性能接口中,异步打印并采集业务日志的实现方案

一、背景 高并发接口中&#xff0c;为了提高接口的高性能&#xff0c;在需要保存审计及操作记录的时候&#xff0c;往往有以下常见方案&#xff1a; 保存到redis数据库异步保存到mysql/mongodb/es等数据库logger打印业务日志&#xff0c;采集与展示则交由elk模块 对于第一种…

【MATLAB源码-第4期】基于MATLAB的1024QAM误码率曲线,以及星座图展示。

1、算法描述 正交幅度调制&#xff08;QAM&#xff0c;Quadrature Amplitude Modulation&#xff09;是一种在两个正交载波上进行幅度调制的调制方式。这两个载波通常是相位差为90度&#xff08;π/2&#xff09;的正弦波&#xff0c;因此被称作正交载波。这种调制方式因此而得…

福建单航次最大批量汽车“出海”

3月12日这一天&#xff0c;在福州海关的严密监管下&#xff0c;共有4000辆上汽名爵品牌的汽车被高效有序地装载到“安吉智慧”号滚装船上&#xff0c;这批车辆即将启程前往荷兰、埃及、英国等多个海外市场。在这批出口汽车中&#xff0c;新能源车型占据了显著的比例&#xff0c…